132
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Modeling the structure and reactivity landscapes of a pyrazole-ammonium ionic derivative using wavefunction-dependent characteristics and screening for potential anti-inflammatory activity

, , , &
Pages 11190-11202 | Received 06 Apr 2021, Accepted 11 Jul 2021, Published online: 30 Jul 2021

References

  • Abraham, C. S., Prasana, J. C., Muthu, S., Rizwana, B. F., & Raja, M. (2018). Quantum computational studies (FT-IR, FT-Raman and UV-Vis) profiling, natural hybrid orbital and molecular docking analysis on 2,4-dibromoaniline. Journal of Molecular Structure, 1160, 393–405. https://doi.org/10.1016/j.molstruc.2018.02.022
  • Akhmetova, V. R., Akhmadiev, N. S., Abdullin, M. F., Dzhemileva, L. U., & D'yakonov, V. A. (2020). Synthesis of new N,N’-Pd(Pt) complexes based on sulfanyl pyrazoles and investigation of their in vitro anticancer activity. RSC Advances, 10(26), 15116–15123. https://doi.org/10.1039/c9a09783j
  • Al-Otaibi, J. S., Mary, Y. S., Mary, Y. S., & Thomas, R. (2019). Quantum mechanical and photovoltaic studies on the cocrystals of hydrochlorothiazide with isoniazid and malonamide. Journal of Molecular Structure, 1197, 719–726. https://doi.org/10.1016/j.molstruc.2019.07.110
  • Alzoman, N. Z., Mary, Y. S., Panicker, C. Y., Al-Swaidan, I. A., El-Emam, A. A., Al-Deeb, O. A., Al-Saadi, A. A., Van Alsenoy, C., & War, J. A. (2015). Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-[(4-chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)-pyrimidine-5-carbonitrile, a potential chemotherapeutic agent. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 139, 413–424. https://doi.org/10.1016/j.saa.2014.12.043
  • Asif, M. (2015). Pharmacological potential of various substituted traizole compounds. Journal of Pharmaceutical and Biological Sciences, 3, 138–178.
  • Babu, G. A., Sreedhar, S., Rao, S. V., & Ramasamy, P. (2010). Synthesis, growth, structural, thermal, linear and non-linear optical properties of a new organic crystal: Dimethyl ammonium picrate. Journal of Crystal Growth, 312(12–13), 1957–1962. https://doi.org/10.1016/j.crysgro.2010.03.017
  • Becke, A. D., & Edgecombe, K. E. (1990). A simple measure of electron localization in atomic and molecular systems. Journal of Chemical Physics, 92(9), 5397–5403. https://doi.org/10.1063/1.458517
  • Bennani, F. E., Doudach, L., Cherrah, Y., Ramli, Y., Karrouchi, K., Ansar, M., & Faouzi, M. E. A. (2020). Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorganic Chemistry, 97, 103470. https://doi.org/10.1016/j.bioorg.2019.103470
  • Bhirud, J. D., Patil, R. D., & Narkhede, H. P. (2020). Sulfamic acid catalyzed synthesis of new 3,5-[(sub)phenyl]-1H-pyrazole bearing N1-isonicotinoyl: And their pharmacological activity evaluation. Bioorganic and Medicinal Chemistry Letters, 30, 127588. https://doi.org/10.1016/j.bmcl.2020.127588
  • Charli, A., Jin, H., Anantharam, V., Kanthasamy, A., & Kanthasamy, A. G. (2016). Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model. Neurotoxicology, 53, 302–313. https://doi.org/10.1016/j.neuro.2015.06.007
  • Chen, R., Mintseris, J., Janin, J., & Weng, Z. (2003). A protein-protein docking benchmark. Proteins, 52(1), 88–91. https://doi.org/10.1002/prot.10390
  • Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., & Garcia, Y. (2019). Novel Co(II) and Cu(II) coordination complexes constructed from pyrazole-acetamide: Effect of hydrogen bonding on the self assembly process and antioxidant activity. Journal of Inorganic Biochemistry, 191, 21–28. https://doi.org/10.1016/j.jinorgbio.2018.11.006
  • Çolak, A. T., Yeşilel, O. Z., Pamuk, G., Günay, H., & Büyükgüngör, O. (2011). Hydrogen bonding networks and proton transfer compounds of cobalt(II) and copper(II) with pyridine-2,5-dicarboxylate. Polyhedron, 30(6), 1012–1022. https://doi.org/10.1016/j.poly.2010.12.048
  • Connolly, M. L. (1983). Analytical molecular surface calculation. Journal of Applied Crystallography, 16(5), 548–558. https://doi.org/10.1107/S0021889883010985
  • Contreras-Garcia, J., Boto, R. A., Izquierdo-Ruiz, F., Reva, I., Woller, T., & Alonso, M. (2016). A benchmark for the non-covalent interaction (NCI) index or… is it really all in the geometry? Theoretical Chemistry Accounts, 135, 242. https://doi.org/10.1007/s00214-016-1977-7
  • Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N., & Yang, W. (2011). NCIPLOT: A program for plotting non-covalent interaction regions. Journal of Chemical Theory and Computation, 7(3), 625–632. https://doi.org/10.1021/ct100641a
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5. Semichem Inc.
  • Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient unbound docking of rigid molecules. In D. Gusfield (Eds.), Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI). Rome, Italy, Lecture Notes in Computer Science (Vol. 2452, pp. 185–200). Springer Verlag.
  • Elmsellem, H., Karrouchi, K., Aouniti, A., Hammouti, B., Radi, S., Taoufik, J., Ansar, M., Dahmani, M., Steli, H., & Mahi, B. E. (2015). Theoretical prediction and experimental study of 5-methyl-1H-pyrazole-3-carbohydrazide as novel corrosion inhibitor for mild steel in 1.0 HCl. Der Pharma Chemica, 7, 237–245.
  • Farghaly, T. A., Abdallah, M. A., & Aziz, M. R. A. (2012). Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole derivatives. Molecules (Basel, Switzerland), 17(12), 14625–14636. https://doi.org/10.3390/molecules171214625
  • Fazil, S., Smitha, M., Mary, Y. S., Mary, Y. S., Chandramohan, V., Kumar, N., Pavithran, R., & Van Alsenoy, C. (2020). Structural (SC-XRD), spectroscopic, DFT, MD investigations and molecular docking studies of a hydrazone derivative. Chemical Data Collections, 30, 100588. https://doi.org/10.1016/j.cdc.2020.100588
  • Fazil, S., Ravindran, R., Devi, A. S., & Bijili, B. K. (2012). Structural studies of 1-phenyl-2,3-dimethyl-5-oxo-1,2-dihydro-1H-pyrazol-4-ammonium 2[(2-carboxyphenyl) disulfanyl] benzoate. Journal of Molecular Structure, 1021, 147–152. https://doi.org/10.1016/j.molstruc.2012.04.065
  • Fazl-I-Sattar, Ullah, Z., Ata-Ur-Rahman, Rauf, A., Tariq, M., Tahir, A. A., Ayu, K., & Ullah, H. (2015). Phytochemical, spectroscopic and density functional theory study of diospyrin and non-bonding interactions of diospyrin with atmospheric gases. Spectrochimica Acta, 141, 71–79. https://doi.org/10.1016/j.saa.2015.01.022
  • Foresman, J. B. (1996). In E. Frisch (Ed.), Exploring chemistry with electronic structure methods: A guide to using gaussian. Gaussian, Inc.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2010). Gaussian 09. Revision B.01. Gaussian Inc.
  • Gangadharappa, B. S., Sharath, R., Revanasiddappa, P. D., Chandramohan, V., Balasubramaniam, M., & Vardhineni, T. P. (2020). Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors. Journal of Biomolecular Structure & Dynamics, 38(13), 3757–3771. https://doi.org/10.1080/07391102.2019.1667265
  • Giles, G. I., & Jacob, C. (2002). Reactive sulfur species: An emerging concept in oxidative stress. Biological Chemistry, 383(3–4), 375–388.https://doi.org/10.1515/BBC.2002.042
  • Gomha, S. M., & Hassaneen, H. M. E. (2011). Synthesis and antimicrobial activity of some new pyrazoles, fused pyrazolo[3,4-d]-pyrimidine and 1,2-dihydroimidazo-[2,1-c][1,2,4]triazin-6-one derivatives. Molecules (Basel, Switzerland), 16(8), 6549–6560. https://doi.org/10.3390/molecules16086549
  • Guo, F., Li, S. C., Wang, L., & Zhu, D. (2012). Protein-protein binding site identification by enumerating the configurations. BMC Bioinformatics, 13, 158. https://doi.org/10.1186/1471-2105-13-158
  • Hameed, R. S. A., Al-Shafey, H. I., Magd, A. S. A., & Shehata, H. A. (2012). Pyrazole derivatives as corrosion inhibitor for C-steel in hydrochloric acid medium. Journal of Materials and Environmental Science, 3, 294–305.
  • Hargunani, P., Tadge, N., Ceruso, M., Leitans, J., Kazaks, A., Tars, K., Gratteri, P., Supuran, C. T., Nocentini, A., & Toraskar, M. P. (2020). Aryl-4,5-dihydro-1H-pyrazole-1-carboxamide derivatives bearing a sulfonamide moiety show single-digit nanomolar-to-subnanomolar inhibition constants against the tumor-associated human carbonic anhydrases IX and XII. International Journal of Molecular Sciences, 21(7), 2621. https://doi.org/10.3390/ijms21072621
  • Hassan, A. S., Moustafa, G. O., Morsy, N. M., Abdou, A. M., & Hafez, T. S. (2020). Design, synthesis and antibacterial activity of N-aryl-3-(arylamino)-5-(((5-substituted furan-2-yl)methylene)amino)-1H-pyrazole-4-carboxamide as nitrofurantoin analogues. Egyptian Journal of Chemistry, 63, 4481. https://doi.org/10.21608/ejchem.2020.26158.2525
  • Hosna, S., Janzen, D. E., Mary, Y. S., Resmi, K. S., Thomas, R., Rzaigui, M., & Smirani, W. (2018). Molecular structure, spectroscopic, dielectric and thermal study, nonlinear optical properties, natural bond orbital, HOMO-LUMO and molecular docking analysis of (C6Cl2O4) (C10H14N2F)2·2H2O. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 204, 328–339. https://doi.org/10.1016/j.saa.2018.06.062
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD-visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jacobsen, H. (2009). Localized-orbital locator (LOL) profiles of transition-metal hydride and dihydrogen complexes. Canadian Journal of Chemistry, 87(7), 965–973. https://doi.org/10.1139/V09-060
  • Kajal, A., Bala, S., Sharma, N., Kamboj, S., & Saini, V. (2014). Therapeutic potential of hydrazones as anti-inflammatory agents. International Journal of Medicinal Chemistry, 2014, 761030. https://doi.org/10.1155/2014/761030
  • Karrouchi, K., Brandan, S. A., Sert, Y., El Karbane, M., Radi, S., Ferbinteanu, M., Garcia, Y., & Ansar, M. (2021). Synthesis, structural, molecular docking and spectroscopic studies of (E)-N’-(4-methoxybenzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1225, 129072. https://doi.org/10.1106/j.molstruc.2020.129072
  • Karrouchi, K., Brandan, S. A., Sert, Y., El-Marzouqi, H., Radi, S., Ferbinteanu, M., Faouzi, M. E. A., Garcia, Y., & Ansar, M. (2020). Synthesis, X-ray structure, vibrational spectroscopy, DFT, biological evaluation and molecular docking studies of (E)-N’-(4-dimethylamino)benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1219, 128541. https://doi.org/10.1106/j.molstruc.2020.128541
  • Karrouchi, K., Rad, S., Ramli, Y., Taoufik, J., Mabkhot, Y., Al-Aizari, F., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
  • Klopman, G. (1965). Electronegativity. Journal of Chemical Physics, 43(10), S124–S129. https://doi.org/10.1063/1.1701474
  • Kumar, N., Gorai, B., Gupta, S., Shiva, & Goel, N. (2020). Extrapolation of hydroxytyrosol and its analogues as potential anti-inflammatory agents. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1792990
  • Kumar, N., Gupta, S., Yadav, T. C., Pruthi, V., Varadwaj, P. K., & Goel, N. (2019). Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. Journal of Biomolecular Structure and Dynamics, 37(9), 2355–2369. https://doi.org/10.1080/07391102.2018.1481457
  • Kumari, R., Kumar, R., & Lynn, A. (2014). Open source drug discovery consortium: A. Lynn, g-mmpbsa-a CROMACS tool for high throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuruvilla, T. K., Muthu, S., Prasana, J. C., George, J., & Sevvanthi, S. (2019). Spectroscopic (FT-IR, FT-Raman), quantum mechanical and docking studies on methyl[(3S)-3-(napththalen-1-yloxy)-3-(thiophen-2-yl)propyl]amine. Journal of Molecular Structure, 1175, 163–174. https://doi.org/10.1016/j.molstruc.2018.07.097
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Lemkul, J. A., Allen, W. J., & Bevan, D. R. (2010). Practical consideration for building GROMOS-compatible small molecule topologies. Journal of Chemical Information and Modeling, 50(12), 2221–2235. https://doi.org/10.1021/ci100335w
  • Liu, Q., Ren, P., Wang, X., Li, Y., & Yang, Y. (2018). Experimental and theoretical investigation of the photoelectrical properties of tetrabromophenol blue and bromoxylenol blue-based solar cells. Journal of Nanomaterials, 2018, 1–13. https://doi.org/10.1155/2018/9720595
  • Martin, J. M. L., & Van Alsenoy, C. (2007). GAR2PED, A program to obtain a potential energy distribution from a Gaussian archive record. University of Antwerp.
  • Mary, Y. S., Mary, Y. S., Chandramohan, V., Kumar, N., Van Alsenoy, C., & Gamberini, M. C. (2020). DFT and MD simulations and molecular docking of co-crystals of octafluoro-1,4-diiodobutane with phenazine and acridine. Structural Chemistry, 31(6), 2525–2531. https://doi.org/10.1007/s11224-020-01616-7
  • Mary, Y. S., Mary, Y. S., Resmi, K. S., Kumar, V. S., Thomas, R., & Sureshkumar, B. (2019). Detailed quantum mechanical, molecular docking, QSAR prediction, photovoltaic light harvesting efficiency analysis of benzil and its halogenated analogues. Heliyon, 5(11), e02825. https://doi.org/10.1016/j.heliyon.2019.e02825
  • Mary, Y. S., Mary, Y. S., Resmi, K. S., & Thomas, R. (2019). DFT and molecular docking investigations of oxicam derivatives. Heliyon, 5(7), e02175. https://doi.org/10.1016/j.heliyon.2019.e02175
  • Muthukkumar, M., Bhuvaneswari, T., Venkatesh, G., Kamal, C., Vennila, P., Armaković, S., Armaković, S. J., Mary, Y. S., & Panicker, C. Y. (2018). Synthesis, characterization and computational studies of semicarbazide derivative. Journal of Molecular Liquids, 272, 481–495. https://doi.org/10.1016/j.molstruc.2018.09.123
  • Newkome, G. R., Woosley, B. D., He, E., Moorefield, C. N., Guther, R., Baker, G. R., Escamilla, G. H., Merril, J., & Luftmann, H. (1996). Supramolecular chemistry of flexible, dentritic-based structures employing molecular recognition. Chemical Communications, 24, 2737–2738. https://doi.org/10.1039/CC9960002737
  • Ouchrif, A., Zegmout, M., Hammouti, B., El-Kadiri, S., & Ramdani, A. (2005). 1,3-Bis(3-hydroxymethyl-5-methyl-1-pyrazole)propane as corrosion inhibitor for steel in 0.5 M H2SO4 solution. Applied Surface Science, 252(2), 339–344. https://doi.org/10.1016/j.apsusc.2005.01.005
  • Panicker, C. Y., Raj, A., Varghese, H. T., Raju, K., & Mary, Y. S. (2010). Vibrational spectroscopic studies and computational study of methyl(2-methyl-4,6-dinitrophenylsulfanyl) ethanoate. Journal of Raman Spectroscopy, 41(7), 829–838. https://doi.org/10.1002/jrs.2509
  • Pedrosa, R., Andres, C., Duque-Soladana, J. P., Maestro, A., & Nieto, J. (2003). Regio- and diastereoselective tandem addition-carbocyclization promoted by sulfanyl radicals on chiral perhdyro-1,3-benzoxazine. Tetrahedron: Asymmetry, 14(19), 2985–2990. https://doi.org/10.1016/j.tetasy.2003.06.003
  • Poater, J., Duran, M., Sola, M., & Silvi, B. (2005). Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chemical Reviews, 105(10), 3911–3947. https://doi.org/10.1021/cr030085x
  • Prasanth, D. S. N. B. K., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., & Guntupalli, C. (2020). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1779129
  • Raj, A., Mary, Y. S., Panicker, C. Y., Varghese, H. T., & Raju, K. (2013). IR, Raman, SERS and computational study of 2-(benzylsulfanyl)-3,5-dinitrobenzoic acid. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 113, 28–36. https://doi.org/10.1016/j.saa.2013.04.096
  • Rashid, M. A. M., Hayati, D., Kwak, K., & Hong, J. (2020). Theoretical investigation of azobenzene-based photochromic dyes for dye-sensitized solar cells. Nanomaterials, 10(5), 914. https://doi.org/10.3390/nano10050914
  • Rbaa, M., Benhiba, F., Galai, M., Abousalem, A. S., Ouakki, M., Lai, C.-H., Lakhrissi, B., Jama, C., Warad, I., Touhami, M. E., & Zarrouk, A. (2020). Synthesis and characterization of novel Cu(II) and Zn(II) complexes of 5-{[(2-hydroxyethyl)sulfanyl]methyl}-8-hydroxyquinoline as effective acid corrosion inhibitor by experimental and computational testings. Chemical Physics Letters, 754, 137771. https://doi.org/10.1016/j.cplett.2020.137771
  • Rejnhardt, P., & Daszkiewicz, M. (2020). Crystal structure and vibrational spectra of salts of 1H-pyrazole-1-carboxamidine and its protonation route. Structural Chemistry. https://doi.org/10.1007/s11224-020-01671-0
  • Rizwana, B. F., Muthu, S., Prasana, J. C., Abraham, C. S., & Raja, M. (2018). Spectroscopic (FT-IR, FT-Raman) investigation, topology (ESP, ELF, LOL) analyses, charge transfer excitation and molecular docking (dengue, HCV) studies on ribavirin. Chemical Data Collections., 17, 236–250. https://doi.org/10.1016/j.cdc.2018.09.003
  • Roeges, N. P. G. (1994). A guide to the complete interpretation of infrared spectra of organic structures. John Wiley and Sons Inc.
  • Salhe, G., Gatti, C., Presti, L. L., & Contreras-Garcia, J. (2012). Revealing noncovalent interactions in molecular crystals through their experimental electron densities. Chemistry - A European Journal, 18, 15523–15536. https://doi.org/10.1002/chem.201201290
  • Sanglas, L., Valnickova, Z., Arolas, J. L., Pallarés, I., Guevara, T., Solà, M., Kristensen, T., Enghild, J. J., Aviles, F. X., & Gomis-Rüth, F. X. (2008). Molecular link between coagulation and fibrinolyis. Molecular Cell, 31(4), 598–606. https://doi.org/10.1016/j.molcel.2008.05.031
  • Schuttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high- throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Selby, T. P., Lahm, G. P., Stevenson, T. M., Hughes, K. A., Cordova, D., Annan, I. B., Barry, J. D., Benner, E. A., Currie, M. J., & Pahutski, T. F. (2013). Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorganic & Medicinal Chemistry Letters, 23(23), 6341–6345. https://doi.org/10.1016/j.bmcl.2013.09.076
  • Smith, G., Wermuth, U. D., Healy, P. C., & White, J. M. (2007). 3, 5-Dinitrosalicylic acid in molecular assembly. III. Proton-transfer compounds of 3,5-dinitrosalicylic acid with polycyclic aromatic and heteroaromatic amines and overall series structural systematic. Australian Journal of Chemistry, 60(4), 264–277. https://doi.org/10.1071/CH06276
  • Smitha, M., Mary, Y. S., Mary, Y. S., Serdaroglu, G., Chowdhury, P., Rana, M., Umamahesvari, H., Sarojini, B. K., Mohan, B. J., & Pavithran, R. (2021). Modeling the DFT structural and reactivity studies of a pyrimidine-6-carboxylate derivative with reference to its wavefunction-dependent, MD simulations and evaluation for potential antimicrobial activity. Journal of Molecular Structure, 1237, 130397. https://doi.org/10.1016/j.molstruc.2021.130397
  • Thomas, R., Pal, S., Datta, A., Marchewka, M. K., Ratajczak, H., Pati, S. K., & Kulkarni, G. U. (2008). Charge density analysis of two proton transfer complexes: Understanding hydrogen bonding and determination of in -crystal dipole moments. Journal of Chemical Sciences, 120(6), 613–620. https://doi.org/10.1007/s12039-008-0093-1
  • Titi, A., Messali, M., Alqurashy, B. A., Touzani, R., Shiga, T., Oshio, H., Fettouhi, M., Rajabi, M., Almalki, F. A., & Ben Hadda, T. (2020). Synthesis, characterization, X-ray crystal study and bioactivities of pyrazole derivatives: Identification of antitumor, antifungal and antibacterial pharmacophore sites. Journal of Molecular Structure, 1205, 127625. https://doi.org/10.1016/j.molstruc.2019.127625
  • Ullah, Z., Ata-Ur-Rahman, Fazl-I.-Sattar, Rauf, A., Yaseen, M., Hassan, W., Tariq, M., Ayub, K., Tahir, A. A., & Ullah, H. (2015). Density functional theory and phytochemical study of 8-hydroxyisodiospyrin. Journal of Molecular Structure, 1095, 69–78. https://doi.org/10.1016/j.molstruc.2015.04.027
  • Weinhold, F., Landis, C. R., & Glendening, E. D. (2016). What is NBO analysis and how is it useful? International Reviews in Physical Chemistry, 35(3), 399–440. https://doi.org/10.1080/0144235X.2016.1192262
  • Wu, P., Chaudret, R., Hu, X., & Yang, W. (2013). Noncovalent interaction analysis in fluctuating environments. Journal of Chemical Theory and Computation, 9(5), 2226–2234. https://doi.org/10.1021/ct4001087
  • Yadav, T. C., Kumar, N., Raj, U., Goel, N., Vardawaj, P. K., Prasad, R., & Pruthi, V. (2020). Exploration of interaction mechanism of tyrosol as a potent anti-inflammatory agent. Journal of Biomolecular Structure & Dynamics, 38(2), 382–397. https://doi.org/10.1080/07391102.2019.1575283
  • Yarosh, N. O., Zhilitskaya, L. V., Shagun, L. G., & Dorofeev, I. A. (2020). Synthesis of novel carbofunctional organosilicon sulfanyl derivatives of benzazoles and triazoles. Russian Journal of Organic Chemistry, 56(5), 833–839. https://doi.org/10.1134/S1070428020050164
  • Zhang, C., Chen, J., & De Lisi, C. (1999). Protein-protein recognition: Exploring the energy funnels near the binding sites. Proteins: Structure, Function, and Genetics, 34(2), 255–267. https://doi.org/10.1002/(SICI)1097-0134(19990201)34:2<255::AID-PROT10>3.0.CO;2-O
  • Zhang, C., Vasmatzis, G., Cornette, J. L., & DeLisi, C. (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. Journal of Molecular Biology, 267(3), 707–726. https://doi.org/10.1006/jmbi.1996.0859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.