268
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Human prion protein: exploring the thermodynamic stability and structural dynamics of its pathogenic mutants

& ORCID Icon
Pages 11274-11290 | Received 07 Aug 2020, Accepted 15 Jul 2021, Published online: 02 Aug 2021

References

  • Antonyuk, S. V., Trevitt, C. R., Strange, R. W., Jackson, G. S., Sangar, D., Batchelor, M., Cooper, S., Fraser, C., Jones, S., Georgiou, T., Khalili-Shirazi, A., Clarke, A. R., Hasnain, S. S., & Collinge, J. (2009). Crystal structure of human prion protein bound to a therapeutic antibody. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2554s–2558. https://doi.org/10.1073/pnas.0809170106
  • Behmard, E., Abdolmaleki, P., & Asadabadi, E. B. (2012). Mutation in a valine residue induces drastic changes in 3D structure of human prion protein. Frontiers in Life Science, 6(1–2), 47–51. https://doi.org/10.1080/21553769.2013.775078
  • Behmard, E., Abdolmaleki, P., Asadabadi, E. B., & Jahandideh, S. (2011). Prevalent mutations of human prion protein: A molecular modeling and molecular dynamics study. Journal of Biomolecular Structure & Dynamics, 29(2), 379–389. https://doi.org/10.1080/07391102.2011.10507392
  • Biljan, I., Giachin, G., Ilc, G., Zhukov, I., Plavec, J., & Legname, G. (2012). Structural basis for the protective effect of the human prion protein carrying the dominant-negative E219K polymorphism. The Biochemical Journal, 446(2), 243–251. https://doi.org/10.1042/BJ20111940
  • Biljan, I., Ilc, G., Giachin, G., Raspadori, A., Zhukov, I., Plavec, J., & Legname, G. (2011). Toward the molecular basis of inherited prion diseases: NMR structure of the human prion protein with V210I mutation. Journal of Molecular Biology, 412(4), 660–673. https://doi.org/10.1016/j.jmb.2011.07.067
  • Brown, D. R., & Sassoon, J. (2002). Copper-dependent functions for the prion protein. Molecular Biotechnology, 22(2), 165–178. https://doi.org/10.1385/MB:22:2:165
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1), 014101.
  • Calzolai, L., Lysek, D. A., Pérez, D. R., Güntert, P., & Wüthrich, K. (2005). Prion protein NMR structures of chickens, turtles, and frogs. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 651–655. https://doi.org/10.1073/pnas.0408939102
  • Cardone, F., Principe, S., Schininà, M. E., Maras, B., Capellari, S., Parchi, P., Notari, S., Di Francesco, L., Poleggi, A., Galeno, R., Vinci, R., Mellina, V., Almonti, S., Ladogana, A., & Pocchiari, M. (2014). Mutant PrPCJD prevails over wild-type PrPCJD in the brain of V210I and R208H genetic Creutzfeldt-Jakob disease patients. Biochemical and Biophysical Research Communications, 454(2), 289–294. https://doi.org/10.1016/j.bbrc.2014.10.051
  • Chen, X., Zhu, S., Wang, S., Yang, D., & Zhang, J. (2014). Molecular dynamics study on the stability of wild-type and the R220K mutant of human prion protein. Molecular Simulation, 40(6), 504–513. https://doi.org/10.1080/08927022.2013.824572
  • Cheng, C. J., & Daggett, V. (2014). Different misfolding mechanisms converge on common conformational changes Human prion protein pathogenic mutants Y218N and E196K. Prion, 8(1), 125–134. https://doi.org/10.4161/pri.27807
  • Choi, B., Kim, T., Ahn, E. S., Lee, S. W., & Eom, K. (2017). Mechanical deformation mechanisms and properties of prion fibrils probed by atomistic simulations. Nanoscale Research Letters, 12(1), 1–9. https://doi.org/10.1186/s11671-017-1966-3
  • Corsaro, A., Thellung, S., Villa, V., Nizzari, M., & Florio, T. (2012). Role of prion protein aggregation in neurotoxicity. International Journal of Molecular Sciences, 13(7), 8648–8669. https://doi.org/10.3390/ijms13078648
  • D'Angelo, P., Longa, S. D., Acrovito, A., Mancini, G., Zitolo, A., Chillemi, G., Giachin, G., Legname, G., & Benetti, F. (2012). Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site. Biochemistry, 51(31), 6068–6079.
  • De Mori, G. M. S., Micheletti, C., & Colombo, G. (2004). All-atom folding simulations of the villin headpiece from stochastically selected coarse-grained structures. The Journal of Physical Chemistry B, 108(33), 12267–12270. https://doi.org/10.1021/jp0477699
  • Dutta, A., Chen, S., & Surewicz, W. K. (2013). The effect of β2-α2 loop mutation on amyloidogenic properties of the prion protein. FEBS Letters, 587(18), 2918–2923. https://doi.org/10.1016/j.febslet.2013.07.023
  • El-Bastawissy, E., Knaggs, M. H., & Gilbert, I. H. (2001). Molecular dynamics simulations of wild-type and point mutation human prion protein at normal and elevated temperature. Journal of Molecular Graphics and Modelling, 20(2), 145–154. https://doi.org/10.1016/S1093-3263(01)00113-9
  • Gasperini, L., Meneghetti, E., Legname, G., & Benetti, F. (2016). In absence of the cellular prion protein, alterations in copper metabolism and copper-dependent oxidase activity affect iron distribution. Frontiers in Neuroscience, 10, 437. https://doi.org/10.3389/fnins.2016.00437
  • Guo, J., Ning, L., Ren, H., Liu, H., & Yao, X. (2012). Influence of the pathogenic mutations T188K/R/A on the structural stability and misfolding of human prion protein: Insight from molecular dynamics simulations. Biochimica et Biophysica Acta, 1820(2), 116–123. https://doi.org/10.1016/j.bbagen.2011.11.013
  • Guo, J., Ren, H., Ning, L., Liu, H., & Yao, X. (2012). Exploring structural and thermodynamic stabilities of human prion protein pathogenic mutants D202N, E211Q and Q217R. Journal of Structural Biology, 178(3), 225–232. https://doi.org/10.1016/j.jsb.2012.03.009
  • Halliday, M., & Mallucci, G. R. (2015). Review: Modulating the unfolded protein response to prevent neurodegeneration and enhance memory. Neuropathology and Applied Neurobiology, 41(4), 414–427. https://doi.org/10.1111/nan.12211
  • Hara, H., & Sakaguchi, S. (2020). N-Terminal regions of prion protein: Functions and roles in prion diseases. International Journal of Molecular Sciences, 21(17), 6233. https://doi.org/10.3390/ijms21176233
  • Helmus, J. J., Surewicz, K., Apostol, M. I., Surewicz, W. K., & Jaroniec, C. P. (2011). Intermolecular alignment in Y145Stop human prion protein amyloid fibrils probed by solid-state NMR spectroscopy. Journal of the American Chemical Society, 133(35), 13934–13937. https://doi.org/10.1021/ja206469q
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hwang, S., & Nicholson, E. M. (2018). Thermodynamic characterization for the denatured state of bovine prion protein and the BSE Associated variant E211K. Prion, 12(5–6), 301–309. https://doi.org/10.1080/19336896.2018.1534485
  • Ilc, G., Giachin, G., Jaremko, M., Jaremko, Ł., Benetti, F., Plavec, J., Zhukov, I., & Legname, G. (2010). NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features. Plos One, 5(7), e11715. https://doi.org/10.1371/journal.pone.0011715
  • Jahandideh, S., Jamalan, M., & Faridounnia, M. (2015). Molecular dynamics study of the dominant-negative E219K polymorphism in human prion protein. Journal of Biomolecular Structure & Dynamics, 33(6), 1315–1325. https://doi.org/10.1080/07391102.2014.945486
  • Jenkins, D. C., Sylvester, I. D., & Pinheiro, T. J. T. (2008). The elusive intermediate on the folding pathway of the prion protein. The FEBS Journal, 275(6), 1323–1335. https://doi.org/10.1111/j.1742-4658.2008.06293.x
  • Jeong, B.-H., & Kim, Y.-S. (2014). Genetic studies in human prion diseases. Journal of Korean Medical Science, 29(5), 623–632. https://doi.org/10.3346/jkms.2014.29.5.623
  • Ji, H.-F., Zhang, H.-Y., & Shen, L. (2005). The role of electrostatic interaction in triggering the unraveling of stable helix 1 in normal prion protein. A molecular dynamics simulation investigation. Journal of Biomolecular Structure & Dynamics, 22(5), 563–570. https://doi.org/10.1080/07391102.2005.10507026
  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001
  • Juárez-Jiménez, J., Gupta, A. A., Karunanithy, G., Mey, A. S. J. S., Georgiou, C., Ioannidis, H., De Simone, A., Barlow, P. N., Hulme, A. N., Walkinshaw, M. D., Baldwin, A. J., & Michel, J. (2020). Dynamic design: Manipulation of millisecond timescale motions on the energy landscape of cyclophilin A. Chemical Science, 11(10), 2670–2680. https://doi.org/10.1039/c9sc04696h
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Kazmirski, S. L., Li, A., & Daggett, V. (1999). Analysis methods for comparison of multiple molecular dynamics trajectories: Applications to protein unfolding pathways and denatured ensembles. Journal of Molecular Biology, 290(1), 283–304. https://doi.org/10.1006/jmbi.1999.2843
  • Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., & Yee, V. C. (2001). Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nature Structural Biology, 8(9), 770–774. https://doi.org/10.1038/nsb0901-770
  • Lee, S., Antony, L., Hartmann, R., Knaus, K. J., Surewicz, K., Surewicz, W. K., & Yee, V. C. (2010). Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. The EMBO Journal, 29(1), 251–262. https://doi.org/10.1038/emboj.2009.333
  • Legname, G. (2012). Early structural features in mammalian prion conformation conversion. Prion, 6(1), 37–39. https://doi.org/10.4161/pri.6.1.18425
  • Liu, W., Schmidt, B., & Müller-Wittig, W. (2011). CUDA-BLASTP: Accelerating BLASTP on CUDA-Enabled Graphics Hardware. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(6), 1678–1684. https://doi.org/10.1109/TCBB.2011.33
  • Lysek, D. A., Schorn, C., Nivon, L. G., Esteve-Moya, V., Christen, B., Calzolai, L., von Schroetter, C., Fiorito, F., Herrmann, T., Güntert, P., & Wüthrich, K. (2005). Prion protein NMR structures of cats, dogs, pigs, and sheep. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 640–645. https://doi.org/10.1073/pnas.0408937102
  • Mansouri, S., Monajjemi, M., Aghaee, H., Zare, K., & Minuchehr, Z. (2013). Molecular dynamic study of human prion protein upon D178N mutation: New perspective to h-bonds, salt bridges and the critical amino acids. Protein and Peptide Letters, 20(7), 775–780. https://doi.org/10.2174/0929866511320070007
  • Martins, V. R., Mercadante, A. F., Cabral, A. L., Freitas, A. R., & Castro, R. M. (2001). Insights into the physiological function of cellular prion protein. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas, 34(5), 585–595. https://doi.org/10.1590/s0100-879x2001000500005
  • Mitra, P., Shultis, D., Brender, J. R., Czajka, J., Marsh, D., Gray, F., Cierpicki, T., & Zhang, Y. (2013). An evolution-based approach to de novo protein design and case study on Mycobacterium tuberculosis. PLoS Computational Biology, 9(10), e1003298. https://doi.org/10.1371/journal.pcbi.1003298
  • Mitra, P., Shultis, D., & Zhang, Y. (2013). EvoDesign: De novo protein design based on structural and evolutionary profiles. Nucleic Acids Research, 41(Web Server issue), W273–W280. https://doi.org/10.1093/nar/gkt384
  • Montefiori, M., Pilotto, S., Marabelli, C., Moroni, E., Ferraro, M., Serapian, S. A., Mattevi, A., & Colombo, G. (2019). Impact of mutations on NPAC structural dynamics: Mechanistic insights from MD simulations. Journal of Chemical Information and Modeling, 59(9), 3927–3937. https://doi.org/10.1021/acs.jcim.9b00588
  • Morra, G., & Colombo, G. (2008). Relationship between energy distribution and fold stability: Insights from molecular dynamics simulations of native and mutant proteins. Proteins, 72(2), 660–672. https://doi.org/10.1002/prot.21963
  • Mykuliak, V. V., Sikora, M., Booth, J. J., Cieplak, M., Shalashilin, D. V., & Hytönen, V. P. (2020). Mechanical unfolding of proteins-A comparative nonequilibrium molecular dynamics study. Biophysical Journal, 119(5), 939–949. https://doi.org/10.1016/j.bpj.2020.07.030
  • Paciotti, R., Storchi, L., & Marrone, A. (2019). An insight of early PrP-E200K aggregation by combined molecular dynamics/fragment molecular orbital approaches. Proteins, 87(1), 51–61. https://doi.org/10.1002/prot.25621
  • Paladino, A., Woodford, M. R., Backe, S. J., Sager, R. A., Kancherla, P., Daneshvar, M. A., Chen, V. Z., Bourboulia, D., Ahanin, E. F., Prodromou, C., Bergamaschi, G., Strada, A., Cretich, M., Gori, A., Veronesi, M., Bandiera, T., Vanna, R., Bratslavsky, G., Serapian, S. A., Mollapour, M., & Colombo, G. (2020). Chemical perturbation of oncogenic protein folding: From the prediction of locally unstable structures to the design of disruptors of Hsp90-client interactions. Chemistry (Weinheim an Der Bergstrasse, Germany), 26(43), 9459–9465. https://doi.org/10.1002/chem.202000615
  • Peoc'h, K., Levavasseur, E., Delmont, E., De Simone, A., Laffont-Proust, I., Privat, N., Chebaro, Y., Chapuis, C., Bedoucha, P., Brandel, J.-P., Laquerriere, A., Kemeny, J.-L., Hauw, J.-J., Borg, M., Rezaei, H., Derreumaux, P., Laplanche, J.-L., & Haïk, S. (2012). Substitutions at residue 211 in the prion protein drive a switch between CJD and GSS syndrome, a new mechanism governing inherited neurodegenerative disorders. Human Molecular Genetics, 21(26), 5417–5428. https://doi.org/10.1093/hmg/dds377
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Price, D. J., & Brooks, C. L. (2002). Modern protein force fields behave comparably in molecular dynamics simulations. Journal of Computational Chemistry, 23(11), 1045–1057. https://doi.org/10.1002/jcc.10083
  • Prusiner, S. B. (2001). Shattuck lecture-neurodegenerative diseases and prions. The New England Journal of Medicine, 344(20), 1516–1526. https://doi.org/10.1056/NEJM200105173442006
  • Rajesh, Y., Banerjee, A., Pal, I., Biswas, A., Das, S., Dey, K. K., Kapoor, N., Ghosh, A. K., Mitra, P., & Mandal, M. (2019). Delineation of crosstalk between HSP27 and MMP-2/MMP-9: A synergistic therapeutic avenue for glioblastoma management. Biochimica et Biophysica Acta. General Subjects, 1863(7), 1196–1209. https://doi.org/10.1016/j.bbagen.2019.04.015
  • Ross, C. A., & Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nature Medicine, 10(S7), S10–S17. https://doi.org/10.1038/nm1066
  • Rossetti, G., Cong, X., Caliandro, R., Legname, G., & Carloni, P. (2011). Common structural traits across pathogenic mutants of the human prion protein and their implications for familial prion diseases. Journal of Molecular Biology, 411(3), 700–712. https://doi.org/10.1016/j.jmb.2011.06.008
  • Rossetti, G., Giachin, G., Legname, G., & Carloni, P. (2010). Structural facets of disease-linked human prion protein mutants: A molecular dynamic study. Proteins, 78(16), 3270–3280. https://doi.org/10.1002/prot.22834
  • Sakudo, A., Lee, D.-C., Yoshimura, E., Nagasaka, S., Nitta, K., Saeki, K., Matsumoto, Y., Lehmann, S., Itohara, S., Sakaguchi, S., & Onodera, T. (2004). Prion protein suppresses perturbation of cellular copper homeostasis under oxidative conditions. Biochemical and Biophysical Research Communications, 313(4), 850–855. https://doi.org/10.1016/j.bbrc.2003.12.020
  • Sanz-Hernández, M., Barritt, J. D., Sobek, J., Hornemann, S., Aguzzi, A., & De Simone, A. (2021). Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proceedings of the National Academy of Sciences, 118(12), e2019631118. https://doi.org/10.1073/pnas.2019631118
  • Schmitz, M., Dittmar, K., Llorens, F., Gelpi, E., Ferrer, I., Schulz-Schaeffer, W. J., & Zerr, I. (2017). Hereditary human prion diseases: An update. Molecular Neurobiology, 54(6), 4138–4149. https://doi.org/10.1007/s12035-016-9918-y
  • Serapian, S. A., & Bo, C. (2016). Simulating the favorable aggregation of monolacunary keggin anions. The Journal of Physical Chemistry B, 120(50), 12959–12971. https://doi.org/10.1021/acs.jpcb.6b10387
  • Shamsir, M. S., & Dalby, A. R. (2005). One gene, two diseases and three conformations: Molecular dynamics simulations of mutants of human prion protein at room temperature and elevated temperatures. Proteins, 59(2), 275–290. https://doi.org/10.1002/prot.20401
  • Shirts, M. R., Pitera, J. W., Swope, W. C., & Pande, V. S. (2003). Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. Journal of Chemical Physics, 119(11), 5740.
  • Shultis, D., Mitra, P., Huang, X., Johnson, J., Khattak, N. A., Gray, F., Piper, C., Czajka, J., Hansen, L., Wan, B., Chinnaswamy, K., Liu, L., Wang, M., Pan, J., Stuckey, J., Cierpicki, T., Borchers, C. H., Wang, S., Lei, M., & Zhang, Y. (2019). Changing the apoptosis pathway through evolutionary protein design. Journal of Molecular Biology, 431(4), 825–841. https://doi.org/10.1016/j.jmb.2018.12.016
  • Si, K., & Kandel, E. R. (2016). The role of functional prion-like proteins in the persistence of memory. Cold Spring Harbor Perspectives in Biology, 8(4), a021774. https://doi.org/10.1101/cshperspect.a021774
  • Soprana, H. Z., Souza, L. C., Debbas, V., & Laurindo, F. R. M. (2011). Cellular prion protein (PrPC) and superoxide dismutase (SOD) in vascular cells under oxidative stress. Experimental and Toxicologic Pathology, 63(3), 229–236.
  • Tycko, R., & Wickner, R. B. (2013). Molecular structures of amyloid and prion fibrils: Consensus versus controversy. Accounts of Chemical Research, 46(7), 1487–1496. https://doi.org/10.1021/ar300282r
  • van der Kamp, M. W., & Daggett, V. (2009). The consequences of pathogenic mutations to the human prion protein. Protein Engineering, Design & Selection: PEDS, 22(8), 461–468. https://doi.org/10.1093/protein/gzp039
  • van der Kamp, M. W., & Daggett, V. (2010a). Influence of pH on the human prion protein: Insights into the early steps of misfolding. Biophysical Journal, 99(7), 2289–2298. https://doi.org/10.1016/j.bpj.2010.07.063
  • van der Kamp, M. W., & Daggett, V. (2010b). Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding. Journal of Molecular Biology, 404(4), 732–748. https://doi.org/10.1016/j.jmb.2010.09.060
  • Watts, J. C., & Prusiner, S. B. (2017). Experimental models of inherited PrP prion diseases. Cold Spring Harbor Perspectives in Medicine, 7(11), a027151. https://doi.org/10.1101/cshperspect.a027151
  • Wong, B. S., Liu, T., Li, R., Pan, T., Petersen, R. B., Smith, M. A., Gambetti, P., Perry, G., Manson, J. C., Brown, D. R., & Sy, M. S. (2001). Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. Journal of Neurochemistry, 76(2), 565–572. https://doi.org/10.1046/j.1471-4159.2001.00028.x
  • Wu, S., Skolnick, J., & Zhang, Y. (2007). Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biology, 5(1), 17. https://doi.org/10.1186/1741-7007-5-17
  • Zahn, R., Güntert, P., von Schroetter, C., & Wüthrich, K. (2003). NMR structure of a variant human prion protein with two disulfide bridges. Journal of Molecular Biology, 326(1), 225–234. https://doi.org/10.1016/S0022-2836(02)01332-3
  • Zahn, R., Liu, A., Lührs, T., Riek, R., von Schroetter, C., López García, F., Billeter, M., Calzolai, L., Wider, G., & Wüthrich, K. (2000). NMR solution structure of the human prion protein. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 145–150. https://doi.org/10.1073/pnas.97.1.145
  • Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/nar/gki524
  • Zhang, Y., Swietnicki, W., Zagorski, M. G., Surewicz, W. K., & Sönnichsen, F. D. (2000). Solution structure of the E200K variant of human prion protein. Implications for the mechanism of pathogenesis in familial prion diseases. The Journal of Biological Chemistry, 275(43), 33650–33654. https://doi.org/10.1074/jbc.C000483200
  • Zhong, L. (2010). Exposure of hydrophobic core in human prion protein pathogenic mutant H187R. Journal of Biomolecular Structure & Dynamics, 28(3), 355–361. https://doi.org/10.1080/07391102.2010.10507365
  • Zhong, L. H. (2012). Effect of E196K mutant on human prion protein structure and stability. Prion, 6, 30–30.
  • Zweckstetter, M., Requena, J. R., & Wille, H. (2017). Elucidating the structure of an infectious protein. PLoS Pathogens, 13(4), e1006229. https://doi.org/10.1371/journal.ppat.1006229

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.