154
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution

&
Pages 11239-11263 | Received 01 Jun 2021, Accepted 14 Jul 2021, Published online: 02 Aug 2021

References

  • Artese, A., Svicher, V., Costa, G., Salpini, R., Di Maio, V. C., Alkhatib, M., Ambrosio, F. A., Santoro, M. M., Assaraf, Y. G., Alcaro, S., & Ceccherini-Silberstein, F. (2020). Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 53, 100721. https://doi.org/10.1016/j.drup.2020.100721
  • Azhar, E. I., El-Kafrawy, S. A., Farraj, S. A., Hassan, A. M., Al-Saeed, M. S., Hashem, A. M., & Madani, T. A. (2014). Evidence for camel-to-human transmission of MERS coronavirus. The New England Journal of Medicine, 370(26), 2499–24505. https://doi.org/10.1056/NEJMoa1401505
  • Azhar, E. I., Hui, D. S. C., Memish, Z. A., Drosten, C., & Zumla, A. (2019). The Middle East respiratory syndrome (MERS). Infectious Disease Clinics of North America, 33(4), 891–905. https://doi.org/10.1016/j.idc.2019.08.001
  • Baharav, T. Z., Kamath, G. M., Tse, D. N., & Shomorony, I. (2020). Spectral Jaccard similarity: A new approach to estimating pairwise sequence alignments. Patterns (New York, N.Y.), 1(6), 100081. https://doi.org/10.1016/j.patter.2020.100081
  • Bai, Z., Cao, Y., Liu, W., & Li, J. (2021). The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation. Viruses, 13(6), 1115. https://doi.org/10.3390/v13061115
  • Bobay, L. M., O'Donnell, A. C., & Ochman, H. (2020). Recombination events are concentrated in the spike protein region of Betacoronaviruses. PLoS Genetics, 16(12), e1009272. https://doi.org/10.1371/journal.pgen.1009272
  • Cascarina, S. M., & Ross, E. D. (2020). A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 34(8), 9832–9842. https://doi.org/10.1096/fj.202001351
  • Chakraborty, A., & Diwan, A. (2020). NL63: A better surrogate virus for studying SARS-CoV-2. Integrative Molecular Medicine, 7, 1–9. https://doi.org/10.15761/IMM.1000408
  • Chan, J. F. W., Lau, S. K. P., To, K. K. W., Cheng, V. C. C., Woo, P. C. Y., & Yuen, K.-Y. (2015). Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clinical Microbiology Reviews, 28(2), 465–522. https://doi.org/10.1128/CMR.00102-14
  • Chang, C., Hou, M., Chang, C., Hsiao, C., & Huang, T. (2014). The SARS coronavirus nucleocapsid protein – Forms and functions. Antiviral Research, 103, 39–50. https://doi.org/10.1016/j.antiviral.2013.12.009
  • Chang, C.-K., Chen, C.-M. M., Chiang, M.-H., Hsu, Y.-L., & Huang, T.-H. (2013). Transient oligomerization of the SARS-CoV N protein – Implication for virus ribonucleoprotein packaging. PLoS ONE, 8(5), e65045. https://doi.org/10.1371/journal.pone.0065045
  • Chang, C. K., Hsu, Y. L., Chang, Y. H., Chao, F. A., Wu, M. C., Huang, Y. S., Hu, C. K., & Huang, T. H. (2009). Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: Implications for ribonucleocapsid protein packaging. Journal of Virology, 83(5), 2255–2264. https://doi.org/10.1128/JVI.02001-08
  • Chang, C.-K., Lo, S.-C., Wang, Y.-S., & Hou, M.-H. (2016). Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discovery Today, 21(4), 562–572. https://doi.org/10.1016/j.drudis.2015.11.015
  • Chaung, J., Chan, D., Pada, S., & Tambyah, P. A. (2020). Coinfection with COVID-19 and coronavirus HKU1 – The critical need for repeat testing if clinically indicated. Journal of Medical Virology, 92(10), 1785–1786. https://doi.org/10.1002/jmv.25890
  • Chechetkin, V. R., & Lobzin, V. V. (2019). Genome packaging within icosahedral capsids and large-scale segmentation in viral genomic sequences. Journal of Biomolecular Structure & Dynamics, 37(9), 2322–2338. https://doi.org/10.1080/07391102.2018.1479660
  • Chechetkin, V. R., & Lobzin, V. V. (2020). Ribonucleocapsid assembly/packaging signals in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2: Detection, comparison and implications for therapeutic targeting. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1815581
  • Chechetkin, V. R., & Lobzin, V. V. (2021). Combining detection and reconstruction of correlational and quasi-periodic motifs in viral genomic sequences with transitional genome mapping: Application to COVID-19. Journal of Integrated OMICS: A Methodological Journal, 11(1), 5–15. https://doi.org/10.5584/jiomics.v11i1.197
  • Chen, C. Y., Chang, C. K., Chang, Y. W., Sue, S. C., Bai, H. I., Riang, L., Hsiao, C. D., & Huang, T. H. (2007). Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. Journal of Molecular Biology, 368(4), 1075–1086. https://doi.org/10.1016/j.jmb.2007.02.069
  • Chung, N. C., Miasojedow, B., Startek, M., & Gambin, A. (2019). Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinformatics, 20(Suppl. 15), 644. https://doi.org/10.1186/s12859-019-3118-5
  • Contini, C., Di Nuzzo, M., Barp, N., Bonazza, A., De Giorgio, R., Tognon, M., & Rubino, S. (2020). The novel zoonotic COVID-19 pandemic: An expected global health concern. Journal of Infection in Developing Countries, 14(3), 254–264. https://doi.org/10.3855/jidc.12671
  • Cubuk, J., Alston, J. J., Incicco, J. J., Singh, S., Stuchell-Brereton, M. D., Ward, M. D., Zimmerman, M. I., Vithani, N., Griffith, D., Wagoner, J. A., Bowman, G. R., Hall, K. B., Soranno, A., & Holehouse, A. S. (2021). The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nature Communications, 12(1), 1936. https://doi.org/10.1038/s41467-021-21953-3
  • Decaro, N., & Lorusso, A. (2020). Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Veterinary Microbiology, 244, 108693. https://doi.org/10.1016/j.vetmic.2020.108693
  • De Gennes, P.-G. (1979). Scaling concepts in polymer physics. Cornell University Press.
  • Dijkman, R., & van der Hoek, L. (2009). Human coronaviruses 229E and NL63: Close yet still so far. Journal of the Formosan Medical Association = Taiwan yi zhi, 108(4), 270–279. https://doi.org/10.1016/S0929-6646(09)60066-8
  • Dinesh, D. C., Chalupska, D., Silhan, J., Koutna, E., Nencka, R., Veverka, V., & Boura, E. (2020). Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathogens, 16(12), e1009100. https://doi.org/10.1371/journal.ppat.1009100
  • Dong, Y., Dai, T., Wei, Y., Zhang, L., Zheng, M., & Zhou, F. (2020). A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy, 5(1), 237. https://doi.org/10.1038/s41392-020-00352-y
  • Dutta, N. K., Mazumdar, K., & Gordy, J. T. (2020). The nucleocapsid protein of SARS-CoV-2: A target for vaccine development. Journal of Virology, 94(13), e00647-20. https://doi.org/10.1128/JVI.00647-20
  • Escors, D., Izeta, A., Capiscol, C., & Enjuanes, L. (2003). Transmissible gastroenteritis coronavirus packaging signal is located at the 5' end of the virus genome. Journal of Virology, 77(14), 7890–7902. https://doi.org/10.1128/JVI.77.14.7890-7902.2003
  • Fosmire, J. A., Hwang, K., & Makino, S. (1992). Identification and characterization of a coronavirus packaging signal. Journal of Virology, 66(6), 3522–3530. https://doi.org/10.1128/JVI.66.6.3522-3530.1992
  • Gao, T., Gao, Y., Liu, X., Nie, Z., Sun, H., Lin, K., Peng, H., & Wang, S. (2021). Identification and functional analysis of the SARS-CoV-2 nucleocapsid protein. BMC Microbiology, 21(1), 58. https://doi.org/10.1186/s12866-021-02107-3
  • Graham, R. L., Deming, D. J., Deming, M. E., Yount, B. L., & Baric, R. S. (2018). Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Communications Biology, 1, 179. https://doi.org/10.1038/s42003-018-0175-7
  • Grossoehme, N. E., Li, L., Keane, S. C., Liu, P., Dann, C. E., III, Leibowitz, J. L., & Giedroc, D. P. (2009). Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. Journal of Molecular Biology, 394(3), 544–557. https://doi.org/10.1016/j.jmb.2009.09.040
  • Gui, M., Liu, X., Guo, D., Zhang, Z., Yin, C., Chen, Y., & Xiang, Y. (2017). Electron microscopy studies of the coronavirus ribonucleoprotein complex. Protein & Cell, 8(3), 219–224. https://doi.org/10.1007/s13238-016-0352-8
  • He, R., Dobie, F., Ballantine, M., Leeson, A., Li, Y., Bastien, N., Cutts, T., Andonov, A., Cao, J., Booth, T. F., Plummer, F. A., Tyler, S., Baker, L., & Li, X. (2004). Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, 316(2), 476–483. https://doi.org/10.1016/j.bbrc.2004.02.074
  • He, R., Leeson, A., Andonov, A., Li, Y., Bastien, N., Cao, J., Osiowy, C., Dobie, F., Cutts, T., Ballantine, M., & Li, X. (2003). Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, 311(4), 870–876. https://doi.org/10.1016/j.bbrc.2003.10.075
  • Hsin, W.-C., Chang, C.-H., Chang, C.-Y., Peng, W.-H., Chien, C.-L., Chang, M.-F., & Chang, S. C. (2018). Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus. Journal of Biomedical Science, 25(1), 47. https://doi.org/10.1186/s12929-018-0449-x
  • Hurst, K. R., Koetzner, C. A., & Masters, P. S. (2013). Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. Journal of Virology, 87(16), 9159–9172. https://doi.org/10.1128/JVI.01275-13
  • Hurst, K. R., Ye, R., Goebel, S. J., Jayaraman, P., & Masters, P. S. (2010). An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. Journal of Virology, 84(19), 10276–10288. https://doi.org/10.1128/JVI.01287-10
  • Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2), 37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
  • Jensen, J. D., & Lynch, M. (2020). Considering mutational meltdown as a potential SARS-CoV-2 treatment strategy. Heredity, 124(5), 619–620. https://doi.org/10.1038/s41437-020-0314-z
  • Ibrahim, B., McMahon, D. P., Hufsky, F., Beer, M., Deng, L., Mercier, P. L., Palmarini, M., Thiel, V., & Marz, M. (2018). A new era of virus bioinformatics. Virus Research, 251, 86–90. https://doi.org/10.1016/j.virusres.2018.05.009
  • Iserman, C., Roden, C. A., Boerneke, M. A., Sealfon, R. S. G., McLaughlin, G. A., Jungreis, I., Fritch, E. J., Hou, Y. J., Ekena, J., Weidmann, C. A., Theesfeld, C. L., Kellis, M., Troyanskaya, O. G., Baric, R. S., Sheahan, T. P., Weeks, K. M., & Gladfelter, A. S. (2020). Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Molecular Cell, 80(6), 1078–1091.e6. https://doi.org/10.1016/j.molcel.2020.11.041
  • Karpiński, T. M., Ożarowski, M., Seremak-Mrozikiewicz, A., Wolski, H., & Wlodkowic, D. (2021). The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics, 11(4), 1690–1702. https://doi.org/10.7150/thno.53691
  • Kuo, L., & Masters, P. S. (2013). Functional analysis of the murine coronavirus genomic RNA packaging signal. Journal of Virology, 87(9), 5182–5192. https://doi.org/10.1128/JVI.00100-13
  • Kwarteng, A., Asiedu, E., Sakyi, S. A., & Asiedu, S. O. (2020). Targeting the SARS-CoV2 nucleocapsid protein for potential therapeutics using immuno-informatics and structure-based drug discovery techniques. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 132, 110914. https://doi.org/10.1016/j.biopha.2020.110914
  • Lai, C.-C., Wang, C.-Y., & Hsueh, P.-R. (2020). Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? Journal of Microbiology, Immunology, and Infection = Wei mian yu gan ran za zhi, 53(4), 505–512. https://doi.org/10.1016/j.jmii.2020.05.013
  • Li, D. D., & Li, Q. H. (2021). SARS-CoV-2: Vaccines in the pandemic era. Military Medical Research, 8(1), 1. https://doi.org/10.1186/s40779-020-00296-y
  • Lin, S.-M., Lin, S.-C., Hsu, J.-N., Chang, C-k., Chien, C.-M., Wang, Y.-S., Wu, H.-Y., Jeng, U.-S., Kehn-Hall, K., & Hou, M.-H. (2020). Structure-based stabilization of non-native protein–protein interactions of coronavirus nucleocapsid proteins in antiviral drug design. Journal of Medicinal Chemistry, 63(6), 3131–3141. https://doi.org/10.1021/acs.jmedchem.9b01913
  • Lobzin, V. V., & Chechetkin, V. R. (2000). Order and correlations in genomic DNA sequences. The spectral approach. Physics-Uspekhi, 43(1), 55–78. https://doi.org/10.1070/PU2000v043n01ABEH000611
  • Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., Dzharullaeva, A. S., Kovyrshina, A. V., Lubenets, N. L., Grousova, D. M., Erokhova, A. S., Botikov, A. G., Izhaeva, F. M., Popova, O., Ozharovskaya, T. A., Esmagambetov, I. B., Favorskaya, I. A., Zrelkin, D. I., Voronina, D. V., Shcherbinin, D. N., … Gintsburg, A. L. (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 397(10275), 671–681. https://doi.org/10.1016/S0140-6736(21)00234-8
  • Lu, S., Ye, Q., Singh, D., Cao, Y., Diedrich, J. K., Yates, J. R., 3rd, Villa, E., Cleveland, D. W., & Corbett, K. D. (2021). The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nature Communications, 12(1), 502. https://doi.org/10.1038/s41467-020-20768-y
  • Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P., & Woo, P. C. Y. (2019). Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 71, 21–30. https://doi.org/10.1016/j.meegid.2019.03.001
  • Mahdy, M. A. A., Younis, W., & Ewaida, Z. (2020). An overview of SARS-CoV-2 and animal infection. Frontiers in Veterinary Science, 7, 596391. https://doi.org/10.3389/fvets.2020.596391
  • Marhon, S. A., & Kremer, S. C. (2011). Gene prediction based on DNA spectral analysis: A literature review. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 18(4), 639–676. https://doi.org/10.1089/cmb.2010.0184
  • Masters, P. S. (2019). Coronavirus genomic RNA packaging. Virology, 537, 198–207. https://doi.org/10.1016/j.virol.2019.08.031
  • Matsuo, T. (2021). Viewing SARS-CoV-2 nucleocapsid protein in terms of molecular flexibility. Biology, 10(6), 454. https://doi.org/10.3390/biology10060454
  • McBride, R., van Zyl, M., & Fielding, B. C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6(8), 2991–3018. https://doi.org/10.3390/v6082991
  • Mishra, S. K., & Tripathi, T. (2021). One year update on the COVID-19 pandemic: Where are we now? Acta Tropica, 214, 105778. https://doi.org/10.1016/j.actatropica.2020.105778
  • Mohd, H. A., Al-Tawfiq, J. A., & Memish, Z. A. (2016). Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir. Virology Journal, 13, 87. https://doi.org/10.1186/s12985-016-0544-0
  • Morales, L., Mateos-Gomez, P. A., Capiscol, C., del Palacio, L., Enjuanes, L., & Sola, I. (2013). Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process. Journal of Virology, 87(21), 11579–11590. https://doi.org/10.1128/JVI.01836-13
  • Narayanan, K., & Makino, S. (2001). Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. Journal of Virology, 75(19), 9059–9067. https://doi.org/10.1128/JVI.75.19.9059-9067.2001
  • Neuman, B. W., & Buchmeier, M. J. (2016). Supramolecular architecture of the coronavirus particle. Advances in Virus Research, 96, 1–27. https://doi.org/10.1016/bs.aivir.2016.08.005
  • Nguyen, T. H. V., Lichière, J., Canard, B., Papageorgiou, N., Attoumani, S., Ferron, F., & Coutard, B. (2019). Structure and oligomerization state of the C-terminal region of the Middle East respiratory syndrome coronavirus nucleoprotein. Acta Crystallographica. Section D, Structural Biology, 75(Pt. 1), 8–15. https://doi.org/10.1107/S2059798318014948
  • O’Leary, V. B., Dolly, O. J., Höschl, C., Černa, M., & Ovsepian, S. V. (2020). Unpacking Pandora from its box: Deciphering the molecular basis of the SARS-CoV-2 coronavirus. International Journal of Molecular Sciences, 22(1), 386. https://doi.org/10.3390/ijms22010386
  • Omrani, A. S., Al-Tawfiq, J. A., & Memish, Z. A. (2015). Middle East respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction. Pathogens and Global Health, 109(8), 354–362. https://doi.org/10.1080/20477724.2015.1122852
  • Ou, X., Zhou, L., Huang, H., Lin, Y., Pan, X., & Chen, D. (2020). A severe case with co-infection of SARS-CoV-2 and common respiratory pathogens. Travel Medicine and Infectious Disease, 35, 101672. https://doi.org/10.1016/j.tmaid.2020.101672
  • Ounit, R., Wanamaker, S., Close, T. J., & Stefano, L. (2015). CLARK: Fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics, 16(1), 236. https://doi.org/10.1186/s12864-015-1419-2
  • Padron-Regalado, E. (2020). Vaccines for SARS-CoV-2: Lessons from other coronavirus strains. Infectious Diseases and Therapy, 9(2), 255–274. https://doi.org/10.1007/s40121-020-00300-x
  • Peng, Y., Du, N., Lei, Y., Dorje, S., Qi, J., Luo, T., Gao, G. F., & Song, H. (2020). Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. The EMBO Journal, 39(20), e105938. https://doi.org/10.15252/embj.2020105938
  • Perdikari, T. M., Murthy, A. C., Ryan, V. H., Watters, S., Naik, M. T., & Fawzi, N. L. (2020). SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. The EMBO Journal, 39(24), e106478. https://doi.org/10.15252/embj.2020106478
  • Rabi, F. A., Al Zoubi, M. S., Kasasbeh, G. A., Salameh, D. M., & Al-Nasser, A. D. (2020). SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens, 9(3), 231. https://doi.org/10.3390/pathogens9030231
  • Rohilla, S. (2021). Designing therapeutic strategies to combat severe acute respiratory syndrome coronavirus-2 disease: COVID-19. Drug Development Research, 82(1), 12–26. https://doi.org/10.1002/ddr.21720
  • Savastano, A., Ibáñez de Opakua, A., Rankovic, M., & Zweckstetter, M. (2020). Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nature Communications, 11(1), 6041. https://doi.org/10.1038/s41467-020-19843-1
  • Sawicki, S. G., Sawicki, D. L., & Siddell, S. G. (2007). A contemporary view of coronavirus transcription. Journal of Virology, 81(1), 20–29. https://doi.org/10.1128/JVI.01358-06
  • Saxena, S. (Ed.). (2020). Coronavirus Disease 2019 (COVID-19). Medical Virology: From Pathogenesis to Disease Control. Springer. https://doi.org/10.1007/978-981-15-4814-7_13
  • Sharma, D., Priyadarshini, P., & Vrati, S. (2015). Unraveling the web of viroinformatics: Computational tools and databases in virus research. Journal of Virology, 89(3), 1489–1501. https://doi.org/10.1128/JVI.02027-14
  • Singh, A., & Gupta, V. (2021). SARS‑CoV‑2 therapeutics: How far do we stand from a remedy? Pharmacological Reports, 73(3), 750–768. https://doi.org/10.1007/s43440-020-00204-0
  • Stockley, P. G., White, S. J., Dykeman, E., Manfield, I., Rolfsson, O., Patel, N., Bingham, R., Barker, A., Wroblewski, E., Chandler-Bostock, R., Weiß, E. U., Ranson, N. A., Tuma, R., & Twarock, R. (2016). Bacteriophage MS2 genomic RNA encodes an assembly instruction manual for its capsid. Bacteriophage, 6(1), e1157666. https://doi.org/10.1080/21597081.2016.1157666
  • Sungsuwan, S., Jongkaewwattana, A., & Jaru-Ampornpan, P. (2020). Nucleocapsid proteins from other swine enteric coronaviruses differentially modulate PEDV replication. Virology, 540, 45–56. https://doi.org/10.1016/j.virol.2019.11.007
  • Swelum, A. A., Shafi, M. E., Albaqami, N. M., El-Saadony, M. T., Elsify, A., Abdo, M., Taha, A. E., Abdel-Moneim, A. E., Al-Gabri, N. A., Almaiman, A. A., Saleh Al-Wajeeh, A., Tufarelli, V., Staffa, V. N., & Abd El-Hack, M. E. (2020). COVID-19 in human, animal, and environment: A review. Frontiers in Veterinary Science, 7, 578. https://doi.org/10.3389/fvets.2020.00578
  • Szelazek, B., Kabala, W., Kus, K., Zdzalik, M., Twarda-Clapa, A., Golik, P., Burmistrz, M., Florek, D., Wladyka, B., Pyrc, K., & Dubin, G. (2017). Structural characterization of human coronavirus NL63 N protein. Journal of Virology, 91(11), e02503-16. https://doi.org/10.1128/JVI.02503-16
  • Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I. V., Holmes, E. C., & Tong, S. (2017). Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. Journal of Virology, 91(5), e01953-16. https://doi.org/10.1128/JVI.01953-16
  • Tilocca, B., Soggiu, A., Sanguinetti, M., Musella, V., Britti, D., Bonizzi, L., Urbani, A., & Roncada, R. (2020). Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes and Infection, 22(4–5), 188–194. https://doi.org/10.1016/j.micinf.2020.04.002
  • Tomović, A., Janičić, P., & Kešelj, V. (2006). n-Gram-based classification and unsupervised hierarchical clustering of genome sequences. Computer Methods and Programs in Biomedicine, 81(2), 137–153. https://doi.org/10.1016/j.cmpb.2005.11.007
  • Tugaeva, K. V., Hawkins, D. E. D. P., Smith, J. L. R., Bayfield, O. W., Ker, D. S., Sysoev, A. A., Klychnikov, O. I., Antson, A. A., & Sluchanko, N. N. (2021). The mechanism of SARS-CoV-2 nucleocapsid protein recognition by the human 14-3-3 proteins. Journal of Molecular Biology, 433(8), 166875. https://doi.org/10.1016/j.jmb.2021.166875
  • Twomey, J. D., Luo, S., Dean, A. Q., Bozza, W. P., Nalli, A., & Zhang, B. (2020). COVID-19 update: The race to therapeutic development. Drug Resistance Updates, 53, 100733. https://doi.org/10.1016/j.drup.2020.100733
  • Verheije, M. H., Hagemeijer, M. C., Ulasli, M., Reggiori, F., Rottier, P. J., Masters, P. S., & de Haan, C. A. (2010). The coronavirus nucleocapsid protein is dynamically associated with the replication–transcription complexes. Journal of Virology, 84(21), 11575–11579. https://doi.org/10.1128/JVI.00569-10
  • Vignuzzi, M., & López, C. B. (2019). Defective viral genomes are key drivers of the virus–host interaction. Nature Microbiology, 4(7), 1075–1087. https://doi.org/10.1038/s41564-019-0465-y
  • V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews. Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  • Vorontsov, I. E., Kulakovskiy, I. V., & Makeev, V. J. (2013). Jaccard index based similarity measure to compare transcription factor binding site models. Algorithms for Molecular Biology: AMB, 8(1), 23. https://doi.org/10.1186/1748-7188-8-23
  • Woo, P. C. Y., Huang, Y., Lau, S. K. P., & Yuen, K.-Y. (2010). Coronavirus genomics and bioinformatics analysis. Viruses, 2(8), 1804–1820. https://doi.org/10.3390/v2081803
  • Woo, P. C. Y., Lau, S. K. P., Yip, C. C., Huang, Y., Tsoi, H. W., Chan, K. H., & Yuen, K.-Y. (2006). Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. Journal of Virology, 80(14), 7136–7145. https://doi.org/10.1128/JVI.00509-06
  • Wu, H.-Y., & Brian, D. A. (2010). Subgenomic messenger RNA amplification in coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12257–12262. https://doi.org/10.1073/pnas.1000378107
  • Yadav, R., Imran, M., Dhamija, P., Suchal, K., & Handu, S. (2020). Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1778536
  • Yang, D., & Leibowitz, J. L. (2015). The structure and functions of coronavirus genomic 3' and 5' ends. Virus Research, 206, 120–133. https://doi.org/10.1016/j.virusres.2015.02.025
  • Yang, M., He, S., Chen, X., Huang, Z., Zhou, Z., Zhou, Z., Chen, Q., Chen, S., & Kang, S. (2020). Structural insight into the SARS-CoV-2 nucleocapsid protein C-terminal domain reveals a novel recognition mechanism for viral transcriptional regulatory sequences. Frontiers in Chemistry, 8, 624765. https://doi.org/10.3389/fchem.2020.624765
  • Ye, Q., West, A. M. V., Silletti, S., & Corbett, K. D. (2020). Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Science: A Publication of the Protein Society, 29(9), 1890–1901. https://doi.org/10.1002/pro.3909
  • Zhang, X., Liao, C. L., & Lai, M. M. (1994). Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. Journal of Virology, 68(8), 4738–4746. https://doi.org/10.1128/JVI.68.8.4738-4746.1994
  • Zhou, H., Chen, X., Hu, T., Li, J., Song, H., Liu, Y., Wang, P., Liu, D., Yang, J., Holmes, E. C., Hughes, A. C., Bi, Y., & Shi, W. (2020). A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology: CB, 30(11), 2196–2203. https://doi.org/10.1016/j.cub.2020.05.023
  • Zhu, H., Chen, C. Z., Sakamuru, S., Zhao, J., Ngan, D. K., Simeonov, A., Hall, M. D., Xia, M., Zheng, W., & Huang, R. (2021). Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics. Scientific Reports, 11(1), 6725. https://doi.org/10.1038/s41598-021-86110-8
  • Zhu, Z., Meng, K., & Meng, G. (2020). Genomic recombination events may reveal the evolution of coronavirus and the origin of SARS-CoV-2. Scientific Reports, 10(1), 21617. https://doi.org/10.1038/s41598-020-78703-6
  • Zinzula, L., Basquin, J., Bohn, S., Beck, F., Klumpe, S., Pfeifer, G., Nagy, I., Bracher, A., Hartl, F. U., & Baumeister, W. (2021). High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochemical and Biophysical Research Communications, 538, 54–62. https://doi.org/10.1016/j.bbrc.2020.09.131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.