504
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative structure-activity relationships, molecular docking and molecular dynamics simulations reveal drug repurposing candidates as potent SARS-CoV-2 main protease inhibitors

, &
Pages 11339-11356 | Received 02 May 2021, Accepted 15 Jul 2021, Published online: 09 Aug 2021

References

  • Ahuja, A. S., Reddy, V. P., & Marques, O. (2020). Artificial intelligence and COVID-19: A multidisciplinary approach. Integrative Medicine Research, 9(3), 100434. https://doi.org/10.1016/j.imr.2020.100434
  • Alamri, M. A., Tahir Ul Qamar, M., Mirza, M. U., Bhadane, R., Alqahtani, S. M., Muneer, I., Froeyen, M., & Salo-Ahen, O. M. H. (2020). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL. Journal of Biomolecular Structure & Dynamics, 38, 1–13. https://doi.org/10.1080/07391102.2020.1782768
  • Alves, V. M., Bobrowski, T., Melo-Filho, C. C., Korn, D., Auerbach, S., Schmitt, C., Muratov, E. N., & Tropsha, A. (2021). QSAR modeling of SARS-CoV Mpro inhibitors identifies sufugolix, cenicriviroc, proglumetacin, and other drugs as candidates for repurposing against SARS-CoV-2 . Molecular Informatics, 40(1), e2000113. https://doi.org/10.1002/minf.202000113
  • Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J., & Hilgenfeld, R. (2002). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. The EMBO Journal, 21(13), 3213–3224. https://doi.org/10.2210/pdb1lvo/pdb
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science (New York, N.Y.), 300(5626), 1763–1767. https://doi.org/10.1126/science.1085658
  • Avti, P., Chauhan, A., Shekhar, N., Prajapat, M., Sarma, P., Kaur, H., Bhattacharyya, A., Kumar, S., Prakash, A., Sharma, S., & Medhi, B. (2021). Computational basis of SARS-CoV 2 main protease inhibition: An insight from molecular dynamics simulation based findings. Journal of Biomolecular Structure & Dynamics, 39, 1–11. https://doi.org/10.1080/07391102.2021.1922310
  • Banerjee, R., Perera, L., & Tillekeratne, L. M. V. (2021). Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today, 26(3), 804–816. https://doi.org/10.1016/j.drudis.2020.12.005
  • Berlin, D. A., Gulick, R. M., & Martinez, F. J. (2020). Severe Covid-19. The New England Journal of Medicine, 383(25), 2451–2460. https://doi.org/10.1056/NEJMcp2009575
  • CDK. (2005a). CDK. H-Bond Donor Count. https://cdk.github.io/cdk/2.3/docs/api/org/openscience/cdk/qsar/descriptors/molecular/HBondDonorCountDescriptor.html
  • CDK. (2005b). CDK. http://cdk.github.io/cdk/2.2/docs/api/org/openscience/cdk/qsar/descriptors/molecular/HBondAcceptorCountDescriptor.html
  • Cha, S. (1975). Tight-binding inhibitors-I. Kinetic behavior. Biochemical Pharmacology, 24(23), 2177–2185. https://doi.org/10.1016/0006-2952(75)90050-7
  • ChemAxon. (2021). ChemAxon - Software solutions and services for chemistry & biology. ChemAxon. https://www.chemaxon.com
  • Cheng, S.-C., Chang, G.-G., & Chou, C.-Y. (2010). Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease. Biophysical Journal, 98(7), 1327–1336. https://doi.org/10.1016/j.bpj.2009.12.4272
  • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303–314. https://doi.org/10.1007/BF02551274
  • Dodda, L. S., de Vaca, I. C., Tirado-Rives, J., & Jorgensen, W. L. (2017). LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research, 45(W1), W331–W336. Issue https://doi.org/10.1093/nar/gkx312
  • Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J., & Jorgensen, W. L. (2017). 1.14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations. The Journal of Physical Chemistry B, 121(15), 3864–3870. https://doi.org/10.1021/acs.jpcb.7b00272
  • DrugBank. (2021). Drugbank v. 5.1.8. https://go.drugbank.com/
  • Freitas, B. T., Durie, I. A., Murray, J., Longo, J. E., Miller, H. C., Crich, D., Hogan, R. J., Tripp, R. A., & Pegan, S. D. (2020). Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infectious Diseases, 6(8), 2099–2109. https://doi.org/10.1021/acsinfecdis.0c00168
  • Froggatt, H. M., Heaton, B. E., & Heaton, N. S. (2020). Development of a fluorescence-based, high-throughput SARS-CoV-2 3CL reporter assay. Journal of Virology, 94(22), 1–16. https://doi.org/10.1128/JVI.01265-20
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics & Modelling, 20(4), 269–276. https://doi.org/10.1016/s1093-3263(01)00123-1
  • Grottesi, A., Bešker, N., Emerson, A., Manelfi, C., Beccari, A. R., Frigerio, F., Lindahl, E., Cerchia, C., & Talarico, C. (2020). Computational studies of SARS-CoV-2 3CLpro: Insights from MD simulations. International Journal of Molecular Sciences, 21(15), 1–16. https://doi.org/10.3390/ijms21155346
  • Gupta, A., & Zhou, H.-X. (2020). Profiling SARS-CoV-2 main protease (MPRO) binding to repurposed drugs using molecular dynamics simulations in classical and neural network-trained force fields. ACS Combinatorial Science, 22(12), 826–832. https://doi.org/10.1021/acscombsci.0c00140
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1), 10–18. https://doi.org/10.1145/1656274.1656278
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors . Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu, Y., Zhu, C., Hu, T., Du, X., Duan, Y., Yu, J., Yang, X., Yang, X., Yang, K., Liu, X., Guddat, L. W., Xiao, G., Zhang, L., Yang, H., & Rao, Z. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology, 27(6), 529–532. https://doi.org/10.1038/s41594-020-0440-6
  • Keshavarzi Arshadi, A., Webb, J., Salem, M., Cruz, E., Calad-Thomson, S., Ghadirian, N., Collins, J., Diez-Cecilia, E., Kelly, B., Goodarzi, H., & Yuan, J. S. (2020). Artificial intelligence for COVID-19 drug discovery and vaccine development. Frontiers in Artificial Intelligence, 3, 65. https://doi.org/10.3389/frai.2020.00065
  • Khan, A., Heng, W., Wang, Y., Qiu, J., Wei, X., Peng, S., Saleem, S., Khan, M., Ali, S. S., & Wei, D.-Q. (2021). In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro) [Review of In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro)]. Phytotherapy Research, 35(6), 2841–2845. https://doi.org/10.1002/ptr.6998
  • Kirby, T. (2021). COVID-19 survivor experiencing long-term symptoms. The Lancet. Respiratory Medicine, 9(6), 570–572. https://doi.org/10.1016/S2213-2600(21)00092-8
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuzikov, M., Costanzi, E., Reinshagen, J., Esposito, F., Vangeel, L., Wolf, M., Ellinger, B., Claussen, C., Geisslinger, G., Corona, A., Iaconis, D., Talarico, C., Manelfi, C., Cannalire, R., Rossetti, G., Gossen, J., Albani, S., Musiani, F., Herzog, K., … Zaliani, A. (2021). Identification of inhibitors of SARS-CoV-2 3CL-pro enzymatic activity using a small molecule in vitro repurposing screen. ACS Pharmacology & Translational Science, 4(3), 1096–1110. https://doi.org/10.1021/acsptsci.0c00216
  • Lee, A. C.-L., Harris, J. L., Khanna, K. K., & Hong, J.-H. (2019). A comprehensive review on current advances in peptide drug development and design. International Journal of Molecular Sciences, 20(10), 1–21. https://doi.org/10.3390/ijms20102383
  • Ma, C., Sacco, M. D., Hurst, B., Townsend, J. A., Hu, Y., Szeto, T., Zhang, X., Tarbet, B., Marty, M. T., Chen, Y., & Wang, J. (2020). Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 30(8), 678–692. https://doi.org/10.1038/s41422-020-0356-z
  • May, J. W., & Steinbeck, C. (2014). Efficient ring perception for the Chemistry Development Kit. Journal of Cheminformatics, 6(1), 3. https://doi.org/10.1186/1758-2946-6-3
  • Mengist, H. M., Dilnessa, T., & Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry, 9, 622898 https://doi.org/10.3389/fchem.2021.622898
  • Mody, V., Ho, J., Wills, S., Mawri, A., Lawson, L., Ebert, M. C. C. J., Fortin, G. M., Rayalam, S., & Taval, S. (2021). Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Communications Biology, 4(1), 93–10. https://doi.org/10.1038/s42003-020-01577-x
  • Mohanty, S., Harun Ai Rashid, M., Mridul, M., Mohanty, C., & Swayamsiddha, S. (2020). Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes & Metabolic Syndrome, 14(5), 1027–1031. https://doi.org/10.1016/j.dsx.2020.06.068
  • Needle, D., Lountos, G. T., & Waugh, D. S. (2015). Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity. Acta Crystallographica Section D, Biological Crystallography, 71(Pt 5), 1102–1111. https://doi.org/10.1107/S1399004715003521
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Qiao, J., Li, Y.-S., Zeng, R., Liu, F.-L., Luo, R.-H., Huang, C., Wang, Y.-F., Zhang, J., Quan, B., Shen, C., Mao, X., Liu, X., Sun, W., Yang, W., Ni, X., Wang, K., Xu, L., Duan, Z.-L., Zou, Q.-C., … Yang, S. (2021). SARS-CoV-2 M inhibitors with antiviral activity in a transgenic mouse model. Science, 371(6536), 1374–1378. https://doi.org/10.1126/science.abf1611
  • Ramos-Guzmán, C. A., Ruiz-Pernía, J. J., & Tuñón, I. (2020). Unraveling the SARS-CoV-2 main protease mechanism using multiscale methods. ACS Catalysis, 10, 12544–12554. https://doi.org/10.1021/acscatal.0c03420
  • Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved peptide and protein torsional energetics with the OPLSAA force field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356
  • Rostkowski, M., Olsson, M. H. M., Søndergaard, C. R., & Jensen, J. H. (2011). Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Structural Biology, 11, 6. https://doi.org/10.1186/1472-6807-11-6
  • Sacco, M. D., Ma, C., Lagarias, P., Gao, A., Townsend, J. A., Meng, X., Dube, P., Zhang, X., Hu, Y., Kitamura, N., Hurst, B., Tarbet, B., Marty, M. T., Kolocouris, A., Xiang, Y., Chen, Y., & Wang, J. (2020). Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M and cathepsin L. Science Advances, 6(50), 1–15. https://doi.org/10.1126/sciadv.abe0751
  • Sammut, C., & Webb, G. I. (2011). Leave-one-out cross-validation. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning. Springer. https://doi.org/10.1007/978-0-387-30164-8_469
  • Schrödinger. (2021). Schrödinger. Maestro. https://www.schrodinger.com/maestro
  • Sharma, J., Kumar Bhardwaj, V., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933
  • Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. K. (2000). Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11(5), 1188–1193. https://doi.org/10.1109/72.870050
  • Sk, M. F., Roy, R., Jonniya, N. A., Poddar, S., & Kar, P. (2021). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure & Dynamics, 39(10), 3649–3661. https://doi.org/10.1080/07391102.2020.1768149
  • Speight, J. G. (2005). A review of: “Origin scientific analysis and graphing software”. Petroleum Science and Technology, 23(7–8), 1021–1021. https://doi.org/10.1080/10916460500214992
  • Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., & Willighagen, E. (2003). The Chemistry Development Kit (CDK): An open-source Java library for chemo- and bioinformatics. Journal of Chemical Information and Computer Sciences, 43(2), 493–500. https://doi.org/10.1021/ci025584y
  • Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., & Willighagen, E. L. (2006). Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. Current Pharmaceutical Design, 12(17), 2111–2120. https://doi.org/10.2174/138161206777585274
  • Tabata, S., Imai, K., Kawano, S., Ikeda, M., Kodama, T., Miyoshi, K., Obinata, H., Mimura, S., Kodera, T., Kitagaki, M., Sato, M., Suzuki, S., Ito, T., Uwabe, Y., & Tamura, K. (2020). Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: A retrospective analysis. The Lancet Infectious Diseases, 20(9), 1043–1050. https://doi.org/10.1016/S1473-3099(20)30482-5
  • Tahir Ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L.-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants . Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vlieghe, P., Lisowski, V., Martinez, J., & Khrestchatisky, M. (2010). Synthetic therapeutic peptides: Science and market. Drug Discovery Today, 15(1–2), 40–56. https://doi.org/10.1016/j.drudis.2009.10.009
  • Weka. (2021). Weka 3 - data mining with open source machine learning software in Java. https://www.cs.waikato.ac.nz/ml/weka/
  • WHO. (2021, June 23). WHO Coronavirus (COVID-19) dashboard. World Health Organization. https://covid19.who.int/
  • Willighagen, E. L., Mayfield, J. W., Alvarsson, J., Berg, A., Carlsson, L., Jeliazkova, N., Kuhn, S., Pluskal, T., Rojas-Chertó, M., Spjuth, O., Torrance, G., Evelo, C. T., Guha, R., & Steinbeck, C. (2017). The Chemistry Development Kit (CDK) v2.0: Atom typing, depiction, molecular formulas, and substructure searching. Journal of Cheminformatics, 9(1), 33. https://doi.org/10.1186/s13321-017-0220-4
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–D672. https://doi.org/10.1093/nar/gkj067
  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
  • Wu, C. G., Cheng, S. C., Chen, S. C., Li, J. Y., Fang, Y. H., Chen, Y. H., & Chou, C. Y. (2013). Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease. Acta Crystallographica. Section D, Biological Crystallography, 69(Pt 5), 747–755. https://doi.org/10.1107/S0907444913001315
  • Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet, 395(10225), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9
  • Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese center for disease control and prevention. Jama, 323(13), 1239–1242. https://doi.org/10.1001/jama.2020.2648
  • Yu, X. (2021). Prediction of inhibitory constants of compounds against SARS-CoV 3CLpro enzyme with 2D-QSAR model. Journal of Saudi Chemical Society, 25(7), 101262. https://doi.org/10.1016/j.jscs.2021.101262
  • Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and Multiorgan Response. Current Problems in Cardiology, 45(8), 100618. https://doi.org/10.1016/j.cpcardiol.2020.100618
  • Zaki, M. E. A., Al-Hussain, S. A., Masand, V. H., Akasapu, S., Bajaj, S. O., El-Sayed, N. N. E., Ghosh, A., & Lewaa, I. (2021). Identification of anti-SARS-CoV-2 compounds from food using QSAR-based virtual screening, molecular docking, and molecular dynamics simulation analysis. Pharmaceuticals (Basel, Switzerland), 14(4), 357. https://doi.org/10.3390/ph14040357
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhu, W., Xu, M., Chen, C. Z., Guo, H., Shen, M., Hu, X., Shinn, P., Klumpp-Thomas, C., Michael, S. G., & Zheng, W. (2020). Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening. ACS Pharmacology & Translational Science, 3(5), 1008–1016. https://doi.org/10.1021/acsptsci.0c00108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.