310
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

In silico and in vitro investigation of anticancer effect of newly synthesized nonivamide-s-allyl cysteine ester

, , &
Pages 11511-11525 | Received 09 Apr 2021, Accepted 19 Jul 2021, Published online: 03 Aug 2021

References

  • Allen, J. G., Bourbeau, M. P., Wohlhieter, G. E., Bartberger, M. D., Michelsen, K., Hungate, R., Gadwood, R. C., Gaston, R. D., Evans, B., Mann, L. W., Matison, M. E., Schneider, S., Huang, X., Yu, D., Andrews, P. S., Reichelt, A., Long, A. M., Yakowec, P., Yang, E. Y., Lee, T. A., & Oliner, J. D. (2009). Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. Journal of Medicinal Chemistry, 52(22), 7044–7053. https://doi.org/10.1021/jm900681h
  • Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. The Journal of Nutrition, 131(3s), 955S–962S. https://doi.org/10.1093/jn/131.3.955S
  • Amano, H., Kazamori, D., Itoh, K., & Kodera, Y. (2015). Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs. Drug Metabolism and Disposition, 43(5), 749–755. https://doi.org/10.1124/dmd.115.063230
  • Blahova, Z., Holm, J. C., Weiser, T., Richter, E., Trampisch, M., & Akarachkova, E. (2016). Nicoboxil/nonivamide cream effectively and safely reduces acute nonspecific low back pain–a randomized, placebo-controlled trial. Journal of Pain Research, 9, 1221–1230. https://doi.org/10.2147/JPR.S118329
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (pp. 43–43). IEEE. https://doi.org/10.1145/1188455.1188544
  • Bronowicka-Adamska, P., Bentke, A., Lasota, M., & Wróbel, M. (1975). Effect of S-Allyl–L-Cysteine on MCF-7 Cell Line 3-Mercaptopyruvate Sulfurtransferase/Sulfane Sulfur System, Viability and Apoptosis. Biochemical Pharmacology, 24(17), 1639–1641. https://doi.org/10.3390/ijms21031090
  • Bruncko, M., Oost, T. K., Belli, B. A., Ding, H., Joseph, M. K., Kunzer, A., Martineau, D., McClellan, W. J., Mitten, M., Ng, S.-C., Nimmer, P. M., Oltersdorf, T., Park, C.-M., Petros, A. M., Shoemaker, A. R., Song, X., Wang, X., Wendt, M. D., Zhang, H., … Elmore, S. W. (2007). Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. Journal of Medicinal Chemistry, 50(4), 641–662. https://doi.org/10.1021/jm061152t
  • Byth, K. F., Cooper, N., Culshaw, J. D., Heaton, D. W., Oakes, S. E., Minshull, C. A., Norman, R. A., Pauptit, R. A., Tucker, J. A., Breed, J., Pannifer, A., Rowsell, S., Stanway, J. J., Valentine, A. L., & Thomas, A. P. (2004). Imidazo[1,2-b]pyridazines: a potent and selective class of cyclin-dependent kinase inhibitors . Bioorganic & Medicinal Chemistry Letters, 14(9), 2249–2252. https://doi.org/10.1016/j.bmcl.2004.02.008
  • Castrillón, W., Herrera-R, A., Prieto, L. J., Conesa-Milián, L., Carda, M., Naranjo, T., Maldonado, M. E., & Cardona-G, W. (2019). Synthesis and in-vitro evaluation of s-allyl cysteine ester - caffeic acid amide hybrids as potential anticancer agents . Iranian Journal of Pharmaceutical Research: IJPR, 18(4), 1770–1789. https://doi.org/10.22037/ijpr.2019.15184.12921
  • Cave, D., Ilisso, C. P., Mosca, L., Pagano, M., Martino, E., Porcelli, M., & Cacciapuoti, G. (2017). The anticancer effects of S-adenosylmethionine on breast cancer cells. JSM Chemistry, 5, 1049.
  • Chen, I., Yang, J., Yeh, J., Wu, B., Lo, Y., & Chen, S. (1992). Hypotensive and antinociceptive effects of ether-linked and relatively non-pungent analogues of N-nonanoyl vanillylamide. European Journal of Medicinal Chemistry., 27(3), 187–192. https://doi.org/10.1016/0223-5234(92)90002-I
  • Chhabria, S. V., Akbarsha, M. A., Li, A. P., Kharkar, P. S., & Desai, K. B. (2015). In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression. Apoptosis: An International Journal on Programmed Cell Death, 20(10), 1388–1409. https://doi.org/10.1007/s10495-015-1159-4
  • Chou, C.-C., Wu, Y.-C., Wang, Y.-F., Chou, M.-J., Kuo, S.-J., & Chen, D.-R. (2009). Capsaicin-induced apoptosis in human breast cancer MCF-7 cells through caspase-independent pathway. Oncology Reports, 21(3), 665–671.
  • Chu, Q., Lee, D. T., Tsao, S. W., Wang, X., & Wong, Y. C. (2007). S-allylcysteine, a water-soluble garlic derivative, suppresses the growth of a human androgen-independent prostate cancer xenograft, CWR22R, under in vivo conditions. BJU International, 99(4), 925–932. https://doi.org/10.1111/j.1464-410X.2006.06639.x
  • Colín-González, A. L., Santana, R. A., Silva-Islas, C. A., Chánez-Cárdenas, M. E., Santamaría, A., & Maldonado, P. D. (2012). The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxidative Medicine and Cellular Longevity, 2012, 907162. https://doi.org/10.1155/2012/907162
  • Constant, H. L., Cordell, G. A., & West, D. P. (1996). Nonivamide, a constituent of Capsicum oleoresin. Journal of Natural Products, 59(4), 425–426. https://doi.org/10.1021/np9600816
  • De Greef, D., Barton, E. M., Sandberg, E. N., Croley, C. R., Pumarol, J., Wong, T. L., Das, N., & Bishayee, A. (2021). Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Seminars in Cancer Biology, 73, 219–264. https://doi.org/10.1016/j.semcancer.2020.11.020
  • DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., Jemal, A., & Siegel, R. L. (2019). Breast cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(6), 438–451. https://doi.org/10.3322/caac.21583
  • Devarajan, E., Sahin, A. A., Chen, J. S., Krishnamurthy, R. R., Aggarwal, N., Brun, A.-M., Sapino, A., Zhang, F., Sharma, D., Yang, X.-H., Tora, A. D., & Mehta, K. (2002). Down-regulation of caspase 3 in breast cancer: A possible mechanism for chemoresistance. Oncogene, 21(57), 8843–8851. https://doi.org/10.1038/sj.onc.1206044
  • Diaz-Vidal, T., Rosales-Rivera, L. C., Mateos-Díaz, J. C., & Rodríguez, J. A. (2020). A series of novel esters of capsaicin analogues catalyzed by Candida antarctica lipases. Biotechnology and Bioprocess Engineering, 25(1), 94–103. https://doi.org/10.1007/s12257-019-0290-4
  • El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., & Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell, 75(4), 817–825. https://doi.org/10.1016/0092-8674(93)90500-P
  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Galadari, S., Rahman, A., Pallichankandy, S., & Thayyullathil, F. (2017). Reactive oxygen species and cancer paradox: To promote or to suppress?. Free Radical Biology & Medicine, 104, 144–164. https://doi.org/10.1016/j.freeradbiomed.2017.01.004
  • Geetha Rani, Y., & Lakshmi, B. S. (2019). Structural insight into the antagonistic action of diarylheptanoid on human estrogen receptor alpha. Journal of Biomolecular Structure & Dynamics, 37(5), 1189–1203. https://doi.org/10.1080/07391102.2018.1453378
  • Guo, Z., Xu, Y., Peng, Y., Ur Rashid, H., Quan, W., Xie, P., Wu, L., Jiang, J., Wang, L., & Liu, X. (2019). Design, synthesis and evaluation of novel (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit as anticancer agents. Bioorganic & Medicinal Chemistry Letters, 29, 1133–1137. https://doi.org/10.1016/j.bmcl.2019.02.023
  • Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A., & Dean, D. C. (1999). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 98(6), 859–869. https://doi.org/10.1016/S0092-8674(00)81519-6
  • Harris, I. S., Treloar, A. E., Inoue, S., Sasaki, M., Gorrini, C., Lee, K. C., Yung, K. Y., Brenner, D., Knobbe-Thomsen, C. B., Cox, M. A., Elia, A., Berger, T., Cescon, D. W., Adeoye, A., Brüstle, A., Molyneux, S. D., Mason, J. M., Li, W. Y., Yamamoto, K., … Mak, T. W. (2015). Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 27(2), 211–222. https://doi.org/10.1016/j.ccell.2014.11.019
  • Hata, A. N., Engelman, J. A., & Faber, A. C. (2015). The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discovery, 5(5), 475–487. https://doi.org/10.1158/2159-8290.CD-15-0011
  • Ho, J. N., Kang, M., Lee, S., Oh, J. J., Hong, S. K., Lee, S. E., & Byun, S. S. (2018). Anticancer effect of S‑allyl‑L‑cysteine via induction of apoptosis in human bladder cancer cells. Oncology Lett, 15, 623–629.
  • Kachadourian, R., & Day, B. J. (2006). Flavonoid-induced glutathione depletion: Potential implications for cancer treatment. Free Radical Biology & Medicine, 41(1), 65–76. https://doi.org/10.1016/j.freeradbiomed.2006.03.002
  • Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry & Biophysics, 21(2), 130–132.
  • Kennedy, L., Sandhu, J. K., Harper, M.-E., & Cuperlovic-Culf, M. (1975). Role of glutathione in cancer: From mechanisms to therapies. Biomolecules, 10(10), 1429. https://doi.org/10.3390/biom10101429
  • Kowaltowski, A. J., & Fiskum, G. (2005). Redox mechanisms of cytoprotection by Bcl-2. Antioxidants & Redox Signaling, 7(3-4), 508–514. https://doi.org/10.1089/ars.2005.7.508
  • Kwan, Y. P., Saito, T., Ibrahim, D., Al-Hassan, F. M. S., Ein Oon, C., Chen, Y., Jothy, S. L., Kanwar, J. R., & Sasidharan, S. (2016). Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharmaceutical Biology, 54(7), 1223–1236. https://doi.org/10.3109/13880209.2015.1064451
  • Lagunas-Cruz, MdC., Valle-Mendiola, A., Trejo-Huerta, J., Rocha-Zavaleta, L., Mora-García, MdL., Gutiérrez-Hoya, A., Weiss-Steider, B., & Soto-Cruz, I. (2019). IL-2 induces transient arrest in the G1 phase to protect cervical cancer cells from entering apoptosis. Journal of Oncology, 2019, 7475295. https://doi.org/10.1155/2019/7475295
  • Liao, X. H., Lu, D. L., Wang, N., Liu, L. Y., Wang, Y., Li, Y. Q., Yan, T. B., Sun, X. G., Hu, P., & Zhang, T. C. (2014). Estrogen receptor α mediates proliferation of breast cancer MCF-7 cells via a p21/PCNA/E2F1-dependent pathway. The FEBS Journal, 281(3), 927–942. https://doi.org/10.1111/febs.12658
  • Lin, Y.-C., Uang, H.-W., Lin, R.-J., Chen, J., & Lo, Y.-C. (2007). Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. The Journal of Pharmacology and Experimental Therapeutics, 323(3), 877–887. https://doi.org/10.1124/jpet.107.125955
  • Liu, Z., Li, M., Chen, K., Yang, J., Chen, R., Wang, T., Liu, J., Yang, W., & Ye, Z. (2012). S-allylcysteine induces cell cycle arrest and apoptosis in androgen-independent human prostate cancer cells. Molecular Medicine Reports, 5, 439–443.
  • Lo, Y.-C., Huang, W.-C., & Chen, J. (1997a). Glyceryl nonivamide, a nonpungent analogue of capsaicin, enhances substance P release and renal function in rats. Pharmacology, 54(3), 127–134. https://doi.org/10.1159/000139479
  • Looi, C. Y., Arya, A., Cheah, F. K., Muharram, B., Leong, K. H., Mohamad, K., Wong, W. F., Rai, N., & Mustafa, M. R. (2013). Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS One, 8(2), e56643. https://doi.org/10.1371/journal.pone.0056643
  • Lo, Y.-C., Wu, J.-R., Wu, S.-N., & Chen, J. (1997b). Glyceryl nonivamide: A capsaicin derivative with cardiac calcitonin gene-related peptide releasing, K + channel opening and vasorelaxant properties. The Journal of Pharmacology and Experimental Therapeutics, 281(1), 253–260.
  • Maldonado, P. D., Alvarez-Idaboy, J. R., Aguilar-González, A., Lira-Rocha, A., Jung-Cook, H., Medina-Campos, O. N., Pedraza-Chaverrí, J., & Galano, A. (2011). Role of allyl group in the hydroxyl and peroxyl radical scavenging activity of S-allylcysteine. The Journal of Physical Chemistry B, 115(45), 13408–13417. https://doi.org/10.1021/jp208233f
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Ng, K. T. P., Guo, D. Y., Cheng, Q., Geng, W., Ling, C. C., Li, C. X., Liu, X. B., Ma, Y. Y., Lo, C. M., Poon, R. T. P., Fan, S. T., & Man, K. (2012). A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PLoS One, 7(2), e31655. https://doi.org/10.1371/journal.pone.0031655
  • Orozco-Morales, M., Hernández-Pedro, N. Y., Barrios-Bernal, P., Arrieta, O., Ruiz-Godoy, L. M., Aschner, M., Santamaría, A., & Colín-González, A. L. (2021). S-allylcysteine induces cytotoxic effects in two human lung cancer cell lines via induction of oxidative damage, downregulation of Nrf2 and NF-κB, and apoptosis. Anti-Cancer Drugs, 32(2), 117–000. https://doi.org/10.1097/CAD.0000000000001015
  • Othman, S., & Kozurkova, M. (2018). Sulfur containing acridine derivatives in preclinical studies with cancer cell lines. Current Medicinal Chemistry, 25(17), 1968–1975. https://doi.org/10.2174/0929867324666170414165019
  • Pai, M.-H., Kuo, Y.-H., Chiang, E.-P. I., & Tang, F.-Y. (2012). S-Allylcysteine inhibits tumour progression and the epithelial-mesenchymal transition in a mouse xenograft model of oral cancer. The British Journal of Nutrition, 108(1), 28–38. https://doi.org/10.1017/S0007114511005307
  • Penislusshiyan, S., Chitra, L., Ancy, I., Kumaradhas, P., & Palvannan, T. (2020). Novel antioxidant astaxanthin-s-allyl cysteine biconjugate diminished oxidative stress and mitochondrial dysfunction to triumph diabetes in rat model. Life Sciences, 245, 117367. https://doi.org/10.1016/j.lfs.2020.117367
  • Poornima, P., Quency, R. S., & Padma, V. V. (2013). Neferine induces reactive oxygen species mediated intrinsic pathway of apoptosis in HepG2 cells. Food Chemistry, 136(2), 659–667. https://doi.org/10.1016/j.foodchem.2012.07.112
  • Powolny, A. A., & Singh, S. V. (2008). Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharmaceutical Research, 25(9), 2171–2180. https://doi.org/10.1007/s11095-008-9533-3
  • Rohm, B., Holik, A. K., Kretschy, N., Somoza, M. M., Ley, J. P., Widder, S., Krammer, G. E., Marko, D., & Somoza, V. (2015a). Nonivamide enhances miRNA let-7d expression and decreases adipogenesis PPARγ expression in 3T3-L1 cells. Journal of Cellular Biochemistry, 116(6), 1153–1163. https://doi.org/10.1002/jcb.25052
  • Rohm, B., Holik, A. K., Somoza, M. M., Pignitter, M., Zaunschirm, M., Ley, J. P., Krammer, G. E., & Somoza, V. (2013). Nonivamide, a capsaicin analog, increases dopamine and serotonin release in SH-SY5Y cells via a TRPV1-independent pathway . Molecular Nutrition & Food Research, 57(11), 2008–2018. https://doi.org/10.1002/mnfr.201200846
  • Rohm, B., Riedel, A., Ley, J. P., Widder, S., Krammer, G. E., & Somoza, V. (2015b). Capsaicin, nonivamide and trans-pellitorine decrease free fatty acid uptake without TRPV1 activation and increase acetyl-coenzyme A synthetase activity in Caco-2 cells. Food & Function, 6(1), 172–184. https://doi.org/10.1039/C4FO00435C
  • Rosa, A., Appendino, G., Melis, M. P., Deiana, M., Atzeri, A., Alessandra, I., Minassi, A., & Dessì, M. A. (2009). Protective effect and relation structure-activity of nonivamide and iododerivatives in several models of lipid oxidation. Chemico-Biological Interactions, 180(2), 183–192. https://doi.org/10.1016/j.cbi.2009.01.002
  • Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science (New York, N.Y.), 179(4073), 588–590. https://doi.org/10.1126/science.179.4073.588
  • Sakayanathan, P., Loganathan, C., Iruthayaraj, A., Periyasamy, P., Poomani, K., Periasamy, V., & Thayumanavan, P. (2018). Biological interaction of newly synthesized astaxanthin-s-allyl cysteine biconjugate with Saccharomyces cerevisiae and mammalian α-glucosidase: In vitro kinetics and in silico docking analysis. International Journal of Biological Macromolecules, 118(Pt A), 252–262. https://doi.org/10.1016/j.ijbiomac.2018.06.027
  • Sengupta, D., Chowdhury, K. D., Sarkar, A., Paul, S., & Sadhukhan, G. C. (2014). Berberine and S allyl cysteine mediated amelioration of DEN + CCl4 induced hepatocarcinoma. Biochimica et Biophysica Acta, 1840(1), 219–244. https://doi.org/10.1016/j.bbagen.2013.08.020
  • Shendage, D. M., Fröhlich, R., & Haufe, G. (2004). Highly efficient stereoconservative amidation and deamidation of alpha-amino acids. Organic Letters, 6(21), 3675–3678. https://doi.org/10.1021/ol048771l
  • Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L., Kushner, P. J., Agard, D. A., & Greene, G. L. (2004). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Journal of Medicinal Chemistry, 47(4), 1018–1937. https://doi.org/10.1016/S0092-8674(00)81717-1
  • Sigounas, G., Hooker, J., Anagnostou, A., & Steiner, M. (1997). S‐allylmercaptocysteine inhibits cell proliferation and reduces the viability of erythroleukemia, breast, and prostate cancer cell lines.
  • Singh, R., Bhardwaj, V. K., Sharma, J., Das, P., & Purohit, R. (2021). Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: An in silico exploration. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2021.1900918
  • Singh, C. U., & Nulu, J. R. (2011). Esters of capsaicin for treating pain. Google Patents.
  • Singh, C. U., Woody, D. L., & Jagaveerabhadra, R. N. (2014). Pharmaceutical compositions comprising capsaicin esters for treating pain and cold sores. Google Patents.
  • Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394. https://doi.org/10.1016/0003-2697(72)90132-7
  • Sumiyoshi, H., & Wargovich, M. J. (1990). Chemoprevention of 1, 2-dimethylhydrazine-induced colon cancer in mice by naturally occurring organosulfur compounds. Cancer Research, 50(16), 5084–5087.
  • Sun, L., Cui, Z.-G., Zakki, S. A., Feng, Q.-W., Li, M.-L., & Inadera, H. (2018). Mechanistic study of nonivamide enhancement of hyperthermia-induced apoptosis in U937 cells. Free Radical Biology & Medicine, 120, 147–159. https://doi.org/10.1016/j.freeradbiomed.2018.03.017
  • Takeyama, H., Hoon, D. S., Saxton, R. E., Morton, D. L., & Irie, R. F. (1993). Growth inhibition and modulation of cell markers of melanoma by S-allyl cysteine. Oncology, 50(1), 63–69. https://doi.org/10.1159/000227149
  • Tang, F.-Y., Chiang, E.-P. I., Chung, J.-G., Lee, H.-Z., & Hsu, C.-Y. (2009). S-allylcysteine modulates the expression of E-cadherin and inhibits the malignant progression of human oral cancer. The Journal of Nutritional Biochemistry, 20(12), 1013–1020. https://doi.org/10.1016/j.jnutbio.2008.09.007
  • Tang, F.-Y., Chiang, E.-P., & Pai, M.-H. (2010). Consumption of S-allylcysteine inhibits the growth of human non-small-cell lung carcinoma in a mouse xenograft model. Journal of Agricultural and Food Chemistry, 58(20), 11156–11164. https://doi.org/10.1021/jf102539k
  • Tang, X., Wang, H., Fan, L., Wu, X., Xin, A., Ren, H., & Wang, X. J. (2011). Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radical Biology & Medicine, 50(11), 1599–1609. https://doi.org/10.1016/j.freeradbiomed.2011.03.008
  • Taslimi, P., Erden, Y., Mamedov, S., Zeynalova, L., Ladokhina, N., Tas, R., Tuzun, B., Sujayev, A., Sadeghian, N., Alwasel, S. H., & Gulcin, I. (2021). The biological activities, molecular docking studies, and anticancer effects of 1-arylsuphonylpyrazole derivatives. Journal of Biomolecular Structure & Dynamics, 39(9), 3336–3311. https://doi.org/10.1080/07391102.2020.1763838
  • Tuoya, B. N., Shimoishi, Y., Murata, Y., Tada, M., Koseki, M., & Takahata, K. (2006). Apoptosis induction by dohevanil, a DHA substitutive analog of capsaicin. MCF-7 cells. Life Sci, 78, 1515–1519. https://doi.org/10.1016/j.lfs.2005.07.019
  • Velmurugan, B., Mani, A., & Nagini, S. (2005). Combination of S-allylcysteine and lycopene induces apoptosis by modulating Bcl-2, Bax, Bim and caspases during experimental gastric carcinogenesis. European Journal of Cancer Prevention: The Official Journal of the European Cancer Prevention Organisation (ECP), 14(4), 387–393. https://doi.org/10.1097/00008469-200508000-00012
  • Walker, J., Ley, J. P., Schwerzler, J., Lieder, B., Beltran, L., Ziemba, P. M., Hatt, H., Hans, J., Widder, S., & Krammer, G. E. (1975). Nonivamide, a capsaicin analogue, exhibits anti‐inflammatory properties in peripheral blood mononuclear cells and U‐937 macrophages. Biochemical Pharmacology, 24(17), 1639–1641. https://doi.org/10.1002/mnfr.201600474
  • Welch, C., Wuarin, L., & Sidell, N. (1992). Antiproliferative effect of the garlic compound S-allyl cysteine on human neuroblastoma cells in vitro. Cancer Letters, 63(3), 211–219. https://doi.org/10.1016/0304-3835(92)90263-U
  • Xu, Y-s., Feng, J-g., Zhang, D., Zhang, B., Luo, M., Su, D., & Lin, N-m. (2014). S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. Acta Pharmacologica Sinica, 35(2), 267–274. https://doi.org/10.1038/aps.2013.176
  • Yang, L., Zheng, X. L., Sun, H., Zhong, Y. J., Wang, Q., He, H. N., Shi, X. W., Zhou, B., Li, J. K., Lin, Y., Zhang, L., & Wang, X. (2011). Catalase suppression-mediated H(2)O(2) accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-κB activation and sensitizes apoptosis. Cancer Science, 102(4), 870–876. https://doi.org/10.1111/j.1349-7006.2011.01874.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.