136
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Antitumor drugs effect on the stability of double-stranded DNA: steered molecular dynamics analysis

ORCID Icon & ORCID Icon
Pages 11373-11382 | Received 27 Jan 2021, Accepted 15 Jul 2021, Published online: 06 Aug 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Bansal, M., Bhattacharyya, D., & Ravi, B. (1995). NUPARM and NUCGEN: Software for analysis and generation of sequence dependent nucleic acid structures. Computer Applications in the Biosciences : CABIOS, 11(3), 281–287. https://doi.org/10.1093/bioinformatics/11.3.281
  • Berendsen, H. J. C. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81, 3684. https://doi.org/10.1063/1.448118
  • Bhattacharjee, S. M. (2004). Helicase activity on DNA as a propagating front. Europhysics Letters, 65, 574. https://doi.org/10.1209/epl/i2003-10107-2
  • Bhattacharjee, S. M. (2010). Interfacial instability and DNA fork reversal by repair proteins. Journal of Physics: Condensed Matter, 22, 155102. https://doi.org/10.1088/0953-8984/22/15/155102
  • Bhattacharjee, S. M., & Seno, F. (2003). Helicase on DNA: A phase coexistence based mechanism. Journal of Physics A: Mathematical and General, 36(13), L181–L187. https://doi.org/10.1088/0305-4470/36/13/102
  • Betterton, M. D., & Jü Licher, F. (2005). Velocity and processivity of helicase unwinding of double-stranded nucleic acids. Journal of Physics: Condensed Matter, 17, S3851. https://doi.org/10.1088/0953-8984/17/47/015
  • Bockelmann, U., Essevaz-Roulet, B., & Heslot, F. (1997). Molecular stick-slip motion revealed by opening DNA with Piconewton forces. Physical Review Letters, 79, 4489. https://doi.org/10.1103/PhysRevLett.79.4489
  • Bueren-Calabuig, J. A., Giraudon, C., Galmarini, C. M., Egly, J. M., & Gago, F. (2011). Temperature-induced melting of double stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations. Nucleic Acids Research, 39, 8248. https://doi.org/10.1093/nar/gkr512
  • Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical processes in biochemistry. Annual Review of Biochemistry, 73, 705–748. https://doi.org/10.1146/annurev.biochem.72.121801.161542
  • Bustamante, C., Cheng, W., Mejia, Y. X., & Meija, Y. X. (2011). Revisiting the central dogma one molecule at a time. Cell, 144(4), 480–497. https://doi.org/10.1016/j.cell.2011.01.033
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179. https://doi.org/10.1021/ja00124a002
  • Cornell, W. D., Cieplak, P., Bayly, C. I., & Kollman, P. A. (1993). Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of salvation. Journal of the American Chemical Society, 115, 9620. https://doi.org/10.1021/ja00074a030
  • Danilowicz, C., Kafri, Y., Conroy, R. S., Coljee, V. W., Weeks, J., & Prentiss, M. (2004). Measurement of the phase diagram of DNA unzipping in the temperature-force plane. Physical Review Letters, 93(7), 078101. https://doi.org/10.1103/PhysRevLett.93.078101
  • Danilowicz, C., Limouse, C., Hatch, K., Conover, A., Coljee, V. W., Kleckner, N., & Prentiss, M. (2009). The structure of DNA overstretched from the 5'5' ends differs from the structure of DNA overstretched from the 3'3' ends. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13196–13201. https://doi.org/10.1073/pnas.0904729106
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 10089. https://doi.org/10.1063/1.464397
  • Essevaz-Roulet, B., Bockelmann, U., & Heslot, F. (1997). Mechanical separation of the complementary strands of DNA. Proceedings of the National Academy of Sciences of the United States of America, 94(22), 11935–11940. https://doi.org/10.1073/pnas.94.22.11935
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., … Pople, J. A. (2003). Gaussian 03. Revision A.1. Gaussian, Inc.
  • Goddard, N. L., Bonnet, G., Krichevsky, O., & Libchaber, A. (2000). Sequence dependent rigidity of single stranded DNA. Physical Review Letters, 85(11), 2400–2403. https://doi.org/10.1103/PhysRevLett.85.2400
  • Hatch, K., Danilowicz, C., Coljee, V., & Prentiss, M. (2008). Demonstration that the shear force required to separate short double-stranded DNA does not increase significantly with sequence length for sequences longer than 25 base pairs. Physical review. E, Statistical, nonlinear, and soft matter physics, 78(1 Pt 1), 011920. https://doi.org/10.1103/PhysRevE.78.011920
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/physreva.31.1695
  • Huang, H., Ji, H., Li, H., Jing, Q., Labby, K. J., Martásek, P., Roman, L. J., Poulos, T. L., & Silverman, R. B. (2012). Selective monocationic inhibitors of neuronal nitric oxide synthase. Binding mode insights from molecular dynamics simulations. Journal of the American Chemical Society, 134(28), 11559–11572. https://doi.org/10.1021/ja302269r
  • Kricka, L. L. (1992). Nonisotopic DNA probe techniques. Academic Press.
  • Kühner, F., Morfill, J., Neher, R. A., Blank, K., & Gaub, H. E. (2007). Force-induced DNA slippage. Biophysical Journal, 92(7), 2491–2497. https://doi.org/10.1529/biophysj.106.095836
  • Kumar, S., & Li, M. S. (2010). Biomolecules under mechanical force. Physics Reports, 486(1–2), 1–74. https://doi.org/10.1016/j.physrep.2009.11.001
  • Kundu, S., Mukherjee, S., & Bhattacharyya, D. (2017). Melting of polymeric DNA double helix at elevated temperature: a molecular dynamics approach. Journal of Molecular Model, 23, 226. https://doi.org/10.1007/s00894-017-3398-5
  • Lawley, P. D., & Phillips, D. H. (1996). DNA adducts from chemotherapeutic agents. Mutation Research, 355(1–2), 13–40. https://doi.org/10.1016/0027-5107(96)00020-6
  • Lee, G. U., Chrisey, L. A., & Colton, R. J. (1994). Direct measurement of the forces between complementary strands of DNA. Science (New York, N.Y.), 266(5186), 771–773. https://doi.org/10.1126/science.7973628
  • Lemkul, J. A., & Bevan, D. R. (2010). Assessing the stability of Alzheimer's amyloid protofibrils using molecular dynamics. The Journal of Physical Chemistry. B, 114(4), 1652–1660. https://doi.org/10.1021/jp9110794
  • Maiti, P. K., & Bagchi, B. (2006). Structure and dynamics of DNA-dendrimer complexation: Role of counterions, water, and base pair sequence. Nano Letters, 6(11), 2478–2485. https://doi.org/10.1021/nl061609m
  • Maiti, P. K., Pascal, T. A., Vaidehi, N., & Goddard, W. A. (2004). The stability of Seeman JX DNA topoisomers of paranemic crossover (PX) molecules as a function of crossover number. Nucleic Acids Research, 32(20), 6047–6056. https://doi.org/10.1093/nar/gkh931
  • Mergny, J. L., & Lacroix, L. (2003). Analysis of thermal melting curves. Oligonucleotides, 13(6), 515–537. https://doi.org/10.1089/154545703322860825
  • Mishra, G., Giri, D., Li, M. S., & Kumar, S. (2011). Role of loop entropy in the force induced melting of DNA hairpin. The Journal of Chemical Physics, 135(3), 035102. https://doi.org/10.1063/1.3609970
  • Mishra, R. K., Mishra, G., Li, M. S., & Kumar, S. (2011). Effect of shear force on the separation of double-stranded DNA. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 84(3 Pt 1), 032903. https://doi.org/10.1103/PhysRevE.84.032903
  • Mishra, R. K., Nath, S., & Kumar, S. (2015). Rupture of DNA aptamer: New insights from simulations. The Journal of Chemical Physics, 143(16), 164902. https://doi.org/10.1063/1.4933948
  • Mobley, D. L., Chodera, J. D., & Dill, K. A. (2006). On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. The Journal of Chemical Physics, 125(8), 084902. https://doi.org/10.1063/1.2221683
  • Mukherjee, S., Bansal, M., & Bhattacharyya, D. (2006). Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: Crystal structure database analysis. Journal of Computer-Aided Molecular Design, 20(10–11), 629–645. https://doi.org/10.1007/s10822-006-9083-x
  • Naserrian-Nik, A. M., Tahani, M., & Karttunen, M. (2013). Pulling of double-stranded DNA by atomic force microscopy: A simulation in atomistic details. RSC Advances, 3, 10516. https://doi.org/10.1039/c3ra23213a
  • Negri, A., Marco, E., García-Hernández, V., Domingo, A., Llamas-Saiz, A. L., Porto-Sandá, S., Riguera, R., Laine, W., David-Cordonnier, M.-H., Bailly, C., García-Fernández, L. F., Vaquero, J. J., & Gago, F. (2007). Antitumor activity, X-ray crystal structure, and DNA binding properties of thiocoraline A, a natural bisintercalating thiodepsipeptide. Journal of Medicinal Chemistry, 50(14), 3322–3333. https://doi.org/10.1021/jm070381s
  • Nguyen, T.-H., Steinbock, L.-J., Butt, H.-J., Helm, M., & Berger, R. (2011). Measuring single small molecule binding via rupture forces of a split aptamer. Journal of the American Chemical Society, 133(7), 2025–2027. https://doi.org/10.1021/ja1092002
  • Nosé, S. A. (1984). A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 81, 511. https://doi.org/10.1063/1.447334
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham, T. E., Charles, K., Laughton, C. A., Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophysical Journal, 92(11), 3817–3829. https://doi.org/10.1529/biophysj.106.097782
  • Pingali, P. K., Halder, S., Mukherjee, D., Basu, S., Banerjee, R., Choudhury, D., & Bhattacharyya, D. (2014). Analysis of stacking overlap in nucleic acid structures: Algorithm and application. Journal of Computer-Aided Molecular Design, 28(8), 851–867. https://doi.org/10.1007/s10822-014-9767-6
  • Räschle, M., Knipscheer, P., Knipsheer, P., Enoiu, M., Angelov, T., Sun, J., Griffith, J. D., Ellenberger, T. E., Schärer, O. D., & Walter, J. C. (2008). Mechanism of replication-coupled DNA interstrand crosslink repair. Cell, 134(6), 969–980. https://doi.org/10.1016/j.cell.2008.08.030
  • Schumakovitch, I., Grange, W., Strunz, T., Bertoncini, P., Güntherodt, H. J., & Hegner, M. (2002). Temperature dependence of unbinding forces between complementary DNA strands. Biophysical Journal, 82(1 Pt 1), 517–521. https://doi.org/10.1016/S0006-3495(02)75416-7
  • Singh, R. P., Blossey, R., & Cleri, F. (2013). Structure and mechanical characterization of DNA i-motif nanowires by molecular dynamics simulation. Biophysical Journal, 105(12), 2820–2831. https://doi.org/10.1016/j.bpj.2013.10.021
  • Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A., & Croquette, V. (1996). The elasticity of a single supercoiled DNA molecule. Science (New York, N.Y.), 271(5257), 1835–1837. https://doi.org/10.1126/science.271.5257.1835
  • Strunz, T., Oroszlan, K., Schäfer, R., & Güntherodt, H. J. (1999). Dynamic force spectroscopy of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11277–11282. https://doi.org/10.1073/pnas.96.20.11277
  • Stucki, M., Stagljar, I., Jonsson, Z. O., & Hübscher, U. (2000). A coordinated interplay: Proteins with multiple functions in DNA replication, DNA repair, cell cycle/ checkpoint control, and transcription. Progress in Nucleic Acid Research and Molecular Biology, 65, 261. https://doi.org/10.1016/S0079-6603(00)65007-9
  • Upadhyay, A., Nath, S., & Kumar, S. (2018). Force-induced rupture of double-stranded DNA in the absence and presence of covalently bonded anti-tumor drugs: Insights from molecular dynamics simulations. The Journal of Chemical Physics, 148(21), 215105. https://doi.org/10.1063/1.5024975
  • Wang, J. W., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, J., Cieplak, P., & Kollman, P. (2000). How well does a Restrained Electrostatic Potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  • Wartell, R. M., & Benight, A. (1985). Thermal denaturation of DNA molecules: A comparison of theory with experiment. Physics Reports, 126(2), 67–107. https://doi.org/10.1016/0370-1573(85)90060-2
  • Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738. https://doi.org/10.1038/171737a0
  • Williams, M. C., Wenner, J. R., Rouzina, I., & Bloomfield, V. A. (2001). Effect of pH on the overstretching transition of double-stranded DNA: Evidence of force-induced DNA melting. Biophysical Journal, 80(2), 874–881. https://doi.org/10.1016/S0006-3495(01)76066-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.