248
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Targeting the EGFR in cancer cells by fusion protein consisting of arazyme and third loop of TGF-alpha: an in silico study

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 11744-11757 | Received 10 Nov 2020, Accepted 28 Jul 2021, Published online: 11 Aug 2021

References

  • Amet, N., Lee, H.-F., & Shen, W.-C. (2009). Insertion of the designed helical linker led to increased expression of TF-based fusion proteins. Pharmaceutical Research, 26(3), 523–528. https://doi.org/10.1007/s11095-008-9767-0
  • Amjadi, G., Parivar, K., Fazlollah Mousavi, S., & Imani Fooladi, A. A. (2020). Anti-cancer effects of recombinant arazyme from Serratia Proteomaculans. Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology, 25(1), 531–542.
  • Appert-Collin, A., Hubert, P., Crémel, G., & Bennasroune, A. (2015). Role of ErbB receptors in cancer cell migration and invasion. Frontiers in Pharmacology, 6, 283–283. https://doi.org/10.3389/fphar.2015.00283
  • Benkert, P., and Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Bersanetti, P. A., Park, H.-Y., Bae, K. S., Son, K.-H., Shin, D.-H., Hirata, I. Y., Juliano, M. A., Carmona, A. K., & Juliano, L. (2005). Characterization of arazyme, an exocellular metalloprotease isolated from Serratia proteamaculans culture medium. Enzyme and Microbial Technology, 37(6), 574–581. https://doi.org/10.1016/j.enzmictec.2005.01.041
  • Bryson, C. J., and Jones, T. D., & Baker, M. P. (2010). Prediction of immunogenicity of therapeutic proteins: Validity of computational tools. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 24(1), 1–8. https://doi.org/10.2165/11318560-000000000-00000
  • Bussi, G., and Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chen, X., and Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
  • Chen, F., Liu, H., Sun, H., Pan, P., Li, Y., Li, D., & Hou, T. (2016). Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking . Physical Chemistry Chemical Physics: PCCP, 18(32), 22129–22139. https://doi.org/10.1039/c6cp03670h
  • Coleman, W. B., & Tsongalis, G. J. (2016). The Molecular Basis of Human Cancer. Springer. https://doi.org/10.1007/978-1-59259-125-1
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Das, M., Mohanty, C., & Sahoo, S. K. (2009). Ligand-based targeted therapy for cancer tissue. Expert Opinion on Drug Delivery, 6(3), 285–304. https://doi.org/10.1517/17425240902780166
  • De Vries, S. J., and Van Dijk, M., & Bonvin, A. M. J. J. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897. https://doi.org/10.1038/nprot.2010.32
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Emini, E. A., Hughes, J. V., Perlow, D. S., & Boger, J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of Virology, 55(3), 836–839. https://doi.org/10.1128/JVI.55.3.836-839.1985
  • Felgner, S., Kocijancic, D., Frahm, M., & Weiss, S. (2016). Bacteria in cancer therapy: Renaissance of an old concept. International Journal of Microbiology, 2016, 8451728. https://doi.org/10.1155/2016/8451728
  • Garrett, T. P. J., McKern, N. M., Lou, M., Elleman, T. C., Adams, T. E., Lovrecz, G. O., Zhu, H.-J., Walker, F., Frenkel, M. J., Hoyne, P. A., Jorissen, R. N., Nice, E. C., Burgess, A. W., & Ward, C. W. (2002). Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell, 110(6), 763–773. https://doi.org/10.1016/S0092-8674(02)00940-6
  • Gasteiger, E. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). Springer.
  • Gelly, J.-C., Joseph, A. P., Srinivasan, N., & de Brevern, A. G. (2011). iPBA: A tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Research, 39(Web Server issue), W18–W23. https://doi.org/10.1093/nar/gkr333
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gonda, D. K., Bachmair, A., Wünning, I., Tobias, J. W., Lane, W. S., & Varshavsky, A. (1989). Universality and structure of the N-end rule. The Journal of Biological Chemistry, 264(28), 16700–16712. https://doi.org/10.1016/S0021-9258(19)84762-2
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Ivanciuc, O., and Schein, C., H., & Braun, W. (2003). SDAP: Database and computational tools for allergenic proteins. Nucleic Acids Research, 31(1), 359–362. https://doi.org/10.1093/nar/gkg010
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346
  • Johnson, M. S., and Sutcliffe, M. J., & Blundell, T. L. (1990). Molecular anatomy: Phyletic relationships derived from three-dimensional structures of proteins. Journal of Molecular Evolution, 30(1), 43–59. https://doi.org/10.1007/BF02102452
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211
  • Karplus, P. A., & Schulz, G. E. (1985). Prediction of chain flexibility in proteins. Naturwissenschaften, 72(4), 212–213. https://doi.org/10.1007/BF01195768
  • Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276(1-2), 172–174. https://doi.org/10.1016/0014-5793(90)80535-Q
  • Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins, 81(12), 2159–2166. https://doi.org/10.1002/prot.24403
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kringelum, J. V., Lundegaard, C., Lund, O., & Nielsen, M. (2012). Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking. PLoS Computational Biology, 8(12), e1002829 https://doi.org/10.1371/journal.pcbi.1002829
  • Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D, 60(Pt 12 Pt 1), 2256–2268. https://doi.org/10.1107/S0907444904026460
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Li, J., Yang, F., Wei, F., & Ren, X. (2017). The role of toll-like receptor 4 in tumor microenvironment. Oncotarget, 8(39), 66656–66667. https://doi.org/10.18632/oncotarget.19105
  • Lim, D., Kim, K. S., Kim, H., Ko, K.-C., Song, J. J., Choi, J. H., Shin, M., Min, J.-J., Jeong, J.-H., & Choy, H. E. (2017). Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget, 8(23), 37550–37560. https://doi.org/10.18632/oncotarget.17197
  • Lokhande, K. B., Ballav, S., Thosar, N., Swamy, K. V., & Basu, S. (2020). Exploring conformational changes of PPAR-Ɣ complexed with novel kaempferol, quercetin, and resveratrol derivatives to understand binding mode assessment: A small-molecule checkmate to cancer therapy. Journal of Molecular Modeling, 26(9), 242 https://doi.org/10.1007/s00894-020-04488-0
  • Lokhande, K. B. (2020a). Molecular docking and simulation studies on SARS-CoV-2 Mpro reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as potent drugs against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1805019
  • Lokhande, K. B. (2020b). Probing intermolecular interactions and binding stability of kaempferol, quercetin and resveratrol derivatives with PPAR-γ: Docking, molecular dynamics and MM/GBSA approach to reveal potent PPAR-γ agonist against cancer. Journal of Biomolecular Structure and Dynamics, 0(0), 1–11. https://doi.org/10.1080/07391102.2020.1820380
  • Lokhande, K. B., and Nagar, S., & Swamy, K. V. (2019). Molecular interaction studies of Deguelin and its derivatives with Cyclin D1 and Cyclin E in cancer cell signaling pathway: The computational approach. Scientific Reports, 9(1), 1778–1713. https://doi.org/10.1038/s41598-018-38332-6
  • Massova, I., & Kollman, P. A. (1999). Computational Alanine scanning to probe protein − protein interactions: A novel approach to evaluate binding free energies. Journal of the American Chemical Society, 121(36), 8133–8143. https://doi.org/10.1021/ja990935j
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Naqvi, A.A.T., Mohammad, T., Hasan, G.M., & Hassan, M.I. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Nestor, J. J., Newman, S. R., DeLustro, B., Todaro, G. J., & Schreiber, A. B. (1985). A synthetic fragment of rat transforming growth factor α with receptor binding and antigenic properties. Biochemical and Biophysical Research Communications, 129(1), 226–232. https://doi.org/10.1016/0006-291X(85)91426-3
  • Parker, J. M., and Guo, D., & Hodges, R. S. (1986). New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry, 25(19), 5425–5432. https://doi.org/10.1021/bi00367a013
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029
  • Pereira, F. V., Melo, A. C. L., de Melo, F. M., Mourão-Sá, D., Silva, P., Berzaghi, R., Herbozo, C. C. A., Coelho-Dos-Reis, J., Scutti, J. A., Origassa, C. S. T., Pereira, R. M., Juliano, L., Juliano, M. A., Carmona, A. K., Câmara, N. O. S., Tsuji, M., Travassos, L. R., & Rodrigues, E. G. (2016). TLR4-mediated immunomodulatory properties of the bacterial metalloprotease arazyme in preclinical tumor models. Oncoimmunology, 5(7), e1178420. https://doi.org/10.1080/2162402X.2016.1178420
  • Peters, B., & Sette, A. (2005). Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics, 6, 132. https://doi.org/10.1186/1471-2105-6-132
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514 https://doi.org/10.1186/1471-2105-9-514
  • Potocnakova, L., Bhide, M., & Pulzova, L. B. (2016). An introduction to B-cell epitope mapping and in silico epitope prediction. Journal of Immunology Research, 2016, 6760830. https://doi.org/10.1155/2016/6760830
  • Prisant, M. G., Williams, C. J., Chen, V. B., Richardson, J. S., & Richardson, D. C. (2020). New tools in MolProbity validation: CaBLAM for CryoEM backbone, UnDowser to rethink “waters,” and NGL viewer to recapture online 3D graphics. Protein Science, 29(1), 315–329. https://doi.org/10.1002/pro.3786
  • Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., Kim, D., Kellogg, E., DiMaio, F., Lange, O., Kinch, L., Sheffler, W., Kim, B.-H., Das, R., Grishin, N. V., & Baker, D. (2009). Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins, 77(S9), 89–99. https://doi.org/10.1002/prot.22540
  • Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A., & Stevanović, S. (1999). SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics, 50(3-4), 213–219. https://doi.org/10.1007/s002510050595
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379
  • Roy, A., and Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Saha, S., & Raghava, G. P. S. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server issue), W202–W209. (Web Server issue), https://doi.org/10.1093/nar/gkl343
  • Song, Y., DiMaio, F., Wang, R. Y.-R., Kim, D., Miles, C., Brunette, T., Thompson, J., & Baker, D. (2013). High-resolution comparative modeling with RosettaCM. Structure (London, England: 1993), 21(10), 1735–1742. https://doi.org/10.1016/j.str.2013.08.005
  • Tresanco, M. S. V. (2021). gmx_MMPBSA. https://doi.org/10.5281/ZENODO.4732765
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Wykosky, J., Fenton, T., Furnari, F., & Cavenee, W. K. (2011). Therapeutic targeting of epidermal growth factor receptor in human cancer: Successes and limitations. Chinese Journal of Cancer, 30(1), 5–12. https://doi.org/10.5732/cjc.010.10542
  • Yotsumoto, F., Sanui, A., Fukami, T., Shirota, K., Horiuchi, S., Tsujioka, H., Yoshizato, T., Kuroki, M., & Miyamoto, S. (2009). Efficacy of ligand-based targeting for the EGF system in cancer. Anticancer Research, 29(11), 4879–4885.https://doi.org/10.1517/17425240902780166
  • Yousefi, F., Mousavi, S. F., Siadat, S. D., Aslani, M. M., Amani, J., Rad, H. S., & Fooladi, A. A. I. (2016). Preparation and in vitro evaluation of antitumor activity of TGFαL3-SEB as a ligand-targeted superantigen. Technology in Cancer Research & Treatment, 15(2), 215–226. https://doi.org/10.1177/1533034614568753
  • Zhang, H., and Lund, O., & Nielsen, M. (2009). The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: Application to MHC-peptide binding. Bioinformatics (Oxford, England), 25(10), 1293–1299. https://doi.org/10.1093/bioinformatics/btp137

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.