349
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella serovars

ORCID Icon, ORCID Icon, , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 11809-11821 | Received 29 Mar 2021, Accepted 01 Aug 2021, Published online: 31 Aug 2021

References

  • Anwar, E., Goldberg, E., Fraser, A., Acosta, C. J., Paul, M., & Leibovici, L. (2014). Vaccines for preventing typhoid fever. Cochrane Database of Systematic Reviews, 2(1), CD001261. https://doi.org/10.1002/14651858.CD001261.pub3.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I.N., & Bourne, P. E. (2000). The protein data bank. Nucleic acids research, 28(1), 235–242.
  • Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(1), 153–155. https://doi.org/10.1186/1471-2105-7-153
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9(10), e1003266. https://doi.org/10.1371/journal.pcbi.1003266
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 1–9. https://doi.org/10.1155/2012/842329
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Du, D., Wang-Kan, X., Neuberger, A., van Veen, H. W., Pos, K. M., Piddock, L. J., & Luisi, B. F. (2018). Multidrug efflux pumps: Structure, function and regulation. Nature Reviews. Microbiology, 16(9), 523–539. https://doi.org/10.1038/s41579-018-0048-6
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 1–6. https://doi.org/10.1007/s00894-014-2278-5
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.
  • Esmailnia, E., Amani, J., & Gargari, S. L. M. (2020). Identification of novel vaccine candidate against Salmonella enterica serovar Typhi by reverse vaccinology method and evaluation of its immunization. Genomics, 112(5), 3374–3381. https://doi.org/10.1016/j.ygeno.2020.06.022
  • Foged, C. (2011). Subunit vaccines of the future: The need for safe, customized and optimized particulate delivery systems. Therapeutic Delivery, 2(8), 1057–1077. https://doi.org/10.4155/tde.11.68
  • Gal-Mor, O., Boyle, E. C., & Grassl, G. A. (2014). Same species, different diseases: How and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Frontiers in Microbiology, 5, 391. https://doi.org/10.3389/fmicb.2014.00391
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook (pp. 571–607).
  • Gibani, M. M., Britto, C., & Pollard, A. J. (2018). Typhoid and paratyphoid fever: A call to action. Current Opinion in Infectious Diseases, 31(5), 440–448. https://doi.org/10.1097/QCO.0000000000000479
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Jebastin, T., & Narayanan, S. (2019). In silico epitope identification of unique multidrug resistance proteins from Salmonella typhi for vaccine development. Computational Biology and Chemistry, 78, 74–80. https://doi.org/10.1016/j.compbiolchem.2018.11.020
  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gkh468
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lubelski, J., Konings, W. N., & Driessen, A. J. (2007). Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiology and Molecular Biology Reviews: MMBR, 71(3), 463–476. https://doi.org/10.1128/MMBR.00001-07
  • Mahapatra, S. R., Sahoo, S., Dehury, B., Raina, V., Patro, S., Misra, N., & Suar, M. (2020). Designing an efficient multi-epitope vaccine displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19 infection. Expert Review of Vaccines, 19(9), 871–885. https://doi.org/10.1080/14760584.2020.1811091
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics (Oxford, England), 16(4), 404–405. https://doi.org/10.1093/bioinformatics/16.4.404
  • Moreno‐Eutimio, M. A., Tenorio‐Calvo, A., Pastelin‐Palacios, R., Perez‐Shibayama, C., Gil‐Cruz, C., López‐Santiago, R., & López‐Macías, C. (2013). Salmonella typhi Omp S1 and Omp S2 porins are potent protective immunogens with adjuvant properties. Immunology, 139(4), 459–471.
  • Mukherjee, S., Gangopadhyay, K., & Mukherjee, S. B. (2020). Identification of potential new vaccine candidates in Salmonella typhi using reverse vaccinology and subtractive genomics-based approach. bioRxiv, 521518.
  • Nikaido, H., & Pagès, J. M. (2012). Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiology Reviews, 36(2), 340–363. https://doi.org/10.1111/j.1574-6976.2011.00290.x
  • Pandey, R. K., Ojha, R., Aathmanathan, V. S., Krishnan, M., & Prajapati, V. K. (2018). Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine, 36(17), 2262–2272. https://doi.org/10.1016/j.vaccine.2018.03.042
  • Pandey, R. K., & Prajapati, V. K. (2019). Exploring sand fly salivary proteins to design multiepitope subunit vaccine to fight against visceral leishmaniasis. Journal of Cellular Biochemistry, 120(2), 1141–1155. https://doi.org/10.1002/jcb.26719
  • Pérez-Toledo, M., Valero-Pacheco, N., Pastelin-Palacios, R., Gil-Cruz, C., Perez-Shibayama, C., Moreno-Eutimio, M. A., Becker, I., Pérez-Tapia, S. M., Arriaga-Pizano, L., Cunningham, A. F., Isibasi, A., Bonifaz, L. C., & López-Macías, C. (2017). Salmonella typhi porins OmpC and OmpF are potent adjuvants for T-dependent and T-independent antigens. Frontiers in Immunology, 8, 230. https://doi.org/10.3389/fimmu.2017.00230
  • Radhakrishnan, A., Als, D., Mintz, E. D., Crump, J. A., Stanaway, J., Breiman, R. F., & Bhutta, Z. A. (2018). Introductory article on global burden and epidemiology of typhoid fever. The American Journal of Tropical Medicine and Hygiene, 99(3_Suppl), 4–9. https://doi.org/10.4269/ajtmh.18-0032
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019a). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019b). In silico analysis of synaptonemal complex protein 1 (SYCP1) and acrosin binding protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359. https://doi.org/10.1007/s10989-018-9780-z
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sahu, T. K., Rao, A. R., Meher, P. K., Sahoo, B. C., Gupta, S., & Rai, A. (2015). Computational prediction of MHC class I epitopes for most common viral diseases in cattle (Bos taurus). Indian J Biochem Biophys, 52(1), 34-44. PMID: 26040110.
  • Sehra, D., Sehra, S., Relia, P., & Sehra, S. T. (2013). An altered drug resistance pattern in Salmonella typhi. American Journal of Infectious Diseases and Microbiology, 1(5), 84–85. https://doi.org/10.12691/ajidm-1-5-1
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L., & Souopgui, J. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 9(1), 1–18. https://doi.org/10.1038/s41598-019-40833-x
  • Singh, S., Singh, H., Tuknait, A., Chaudhary, K., Singh, B., Kumaran, S., & Raghava, G. P. (2015). PEPstrMOD: Structure prediction of peptides containing natural, non-natural and modified residues. Biology Direct, 10(1), 1–19. https://doi.org/10.1186/s13062-015-0103-4
  • Sirohi, P. R., Gupta, J., Somvanshi, P., Prajapati, V. K., & Grover, A. (2020). Multiple epitope-based vaccine prediction against SARS-CoV-2 spike glycoprotein. Journal of Biomolecular Structure and Dynamics, 1–12.
  • Sztein, M. B., Salerno-Goncalves, R., & McArthur, M. A. (2014). Complex adaptive immunity to enteric fevers in humans: Lessons learned and the path forward. Frontiers in Immunology, 5, 516. https://doi.org/10.3389/fimmu.2014.00516
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., & Peters, B. (2008). A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Computational Biology, 4(4), e1000048. https://doi.org/10.1371/journal.pcbi.1000048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.