2,097
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Featuring ACE2 binding SARS-CoV and SARS-CoV-2 through a conserved evolutionary pattern of amino acid residues

ORCID Icon & ORCID Icon
Pages 11719-11728 | Received 16 Dec 2020, Accepted 26 Jul 2021, Published online: 06 Sep 2021

References

  • Ahola, T., & Karlin, D. G. (2015). Sequence analysis reveals a conserved extension in the capping enzyme of the alphavirus supergroup, and a homologous domain in nodaviruses. Biology Direct, 10, 16. https://doi.org/10.1186/s13062-015-0050-0
  • Armijos-Jaramillo, V., Yeager, J., Muslin, C., & Perez-Castillo, Y. (2020). SARS-CoV-2, an evolutionary perspective of interaction with human ACE2 reveals undiscovered amino acids necessary for complex stability. Evolutionary Applications, 13, 2168–2178. https://doi.org/10.1111/eva.12980
  • Baranowski, E., Ruiz-Jarabo, C. M., Pariente, N., Verdaguer, N., & Domingo, E. (2003). Evolution of cell recognition by viruses: A source of biological novelty with medical implications. Advances Virus Research, 62, 19–111. https://doi.org/10.1016/S0065-3527(03)62002-6
  • Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011–1033. https://doi.org/10.3390/v4061011
  • Beniac, D. R., Andonov, A., Grudeski, E., & Booth, T. F. (2006). Architecture of the SARS coronavirus prefusion spike. Nature Structural & Molecular Biology, 13(8), 751–752. https://doi.org/10.1038/nsmb1123
  • Bertolaet, B. L., Clarke, D. J., Wolff, M., Watson, M. H., Henze, M., Divita, G., & Reed, S. I. (2001). UBA domains mediate protein–protein interactions between two DNA damage-inducible proteins. Journal of Molecular Biology, 313(5), 955–963. https://doi.org/10.1006/jmbi.2001.5105
  • Cabe, M., Rademacher, D. J., Karlsson, A. B., Cherukuri, S., & Bakowska, J. C. (2018). PB1 and UBA domains of p62 are essential for aggresome-like induced structure formation. Biochemical Biophysics Research & Communication, 503(4), 2306–2311. https://doi.org/10.1016/j.bbrc.2018.06.153
  • Cheng, V. C. C., Lau, S. K. P., Woo, P. C. Y., & Yuen, K. Y. (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical Microbiology Reviews, 20(4), 660–694. https://doi.org/10.1128/CMR.00023-07
  • Claverie, J. M. (2006). Viruses take center stage in cellular evolution. Genome Biology, 7(6), 110. https://doi.org/10.1186/gb-2006-7-6-110
  • Cui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews: Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
  • Dehouck, Y., Kwasigroch, J. M., Rooman, M., & Gilis, D. (2013). BeAtMuSiC: Prediction of changes in protein–protein binding affinity on mutations. Nucleic Acids Research, 41(Web Server issue), W333–W339. https://doi.org/10.1093/nar/gkt450
  • Dieckmann, T., Withers-Ward, E. S., Jarosinski, M. A., Liu, C.-F., Chen, I. S. Y., & Feigon, J. (1998). Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nature Structural Biology, 5(12), 1042–1047. https://doi.org/10.1038/4220
  • Enard, D., Cai, L., Gwennap, C., & Petrov, D. A. (2016). Viruses are a dominant driver of protein adaptation in mammals. eLife, 5, e12469. http://doi.org/10.7554/eLife.12469.001 https://doi.org/10.7554/eLife.12469
  • Filée, J., Forterre, P., & Laurent, J. (2003). The role played by viruses in the evolution of their hosts: A view based on informational protein phylogenies. Research in Microbiology, 154(4), 237–243. https://doi.org/10.1016/S0923-2508(03)00066-4
  • Finley, D. (2009). Recognition and processing of ubiquitin–protein conjugates by the proteasome. Annual Review of Biochemistry, 78, 477–513. https://doi.org/10.1146/annurev.biochem.78.081507.101607
  • Ge, X.-Y., Li, J.-L., Yang, X.-L., Chmura, A. A., Zhu, G., Epstein, J. H., Mazet, J. K., Hu, B., Zhang, W., Peng, C., Zhang, Y.-J., Luo, C.-M., Tan, B., Wang, N., Zhu, Y., Crameri, G., Zhang, S.-Y., Wang, L.-F., Daszak, P., & Shi, Z.-L. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477), 535–538. 10.1038/nature12711
  • Geetha, T., & Wooten, M. W. (2002). Structure and functional properties of the ubiquitin binding protein p62. FEBS Letters, 512(1–3), 19–24. https://doi.org/10.1016/S0014-5793(02)02286-X
  • Glowacka, I., Bertram, S., Herzog, P., Pfefferle, S., Steffen, I., Muench, M. O., Simmons, G., Hofmann, H., Kuri, T., Weber, F., Eichler, J., Drosten, C., & Pöhlmann, S. (2010). Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. Journal of Virology, 84(2), 1198–1205. 10.1128/JVI.01248-09
  • Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., & Gulyaeva, A. A. (2020). The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536–544. https://doi.org/10.1038/s41564-020-0695-z
  • Gralinski, L. E., & Menachery, V. D. (2020). Return of the Coronavirus: 2019-nCoV. Viruses, 12, 135. 10.3390/v12020135
  • He, J., Tao, H., Yan, Y., Huang, S.-Y., & Xiao, Y. (2020). Molecular mechanism of evolution and human infection with SARS-CoV-2. Viruses, 12, 428. https:// https://doi.org/10.3390/v12040428
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
  • Hoffmann, M., Müller, M. A., Drexler, J. F., Glende, J., Erdt, M., Gützkow, T., Losemann, C., Binger, T., Deng, H., Schwegmann-Weßels, C., Esser, K.-H., Drosten, C., & Herrler, G. (2013). Differential sensitivity of bat cells to infection by enveloped RNA viruses: Coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS ONE, 8(8), e72942. 10.1371/journal.pone.0072942
  • Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., & Pöhlmann, S. (2005). Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proceedings of the National Academy of Sciences of the United States of America, 102(22), 7988–7993. 10.1073/pnas.0409465102
  • Hofmann, H., Simmons, G., Rennekamp, A. J., Chaipan, C., Gramberg, T., Heck, E., Geier, M., Wegele, A., Marzi, A., Bates, P., & Pöhlmann, S. (2006). Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. Journal of Virology, 80(17), 8639–8652. 10.1128/JVI.00560-06
  • Hu, B., Zeng, L.-P., Yang, X.-L., Ge, X.-Y., Zhang, W., Li, B., Xie, J.-Z., Shen, X.-R., Zhang, Y.-Z., Wang, N., Luo, D.-S., Zheng, X.-S., Wang, M.-N., Daszak, P., Wang, L.-F., Cui, J., & Shi, Z.-L. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathogens, 13(11), e1006698. https://doi.org/10.1371/journal.ppat.1006698
  • Jaimes, J. A., André, N. M., Chappie, J. S., Millet, J. K., & Whittaker, G. R. (2020). Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. Journal of Molecular Biology, 432(10), 3309–3325. https://doi.org/10.1016/j.jmb.2020.04.009
  • Koonin, E. V., & Dolja, V. V. (2013). A virocentric perspective on the evolution of life. Current Opinion in Virology, 3(5), 546–557. https://doi.org/10.1016/j.coviro.2013.06.008
  • Koonin, E. V., Dolja, V. V., Krupovic, M., Varsani, A., Wolf, Y. I., Yutin, N., Zerbini, F. M., & Kuhn, J. H. (2020). Global organization and proposed megataxonomy of the virus world. Microbiology & Molecular Biology Reviews: MMBR, 84(2), e00061–19. https://doi.org/10.1128/MMBR.00061-19
  • Lam, T. T.-Y., Jia, N., Zhang, Y.-W., Shum, M. H.-H., Jiang, J.-F., Zhu, H.-C., Tong, Y.-G., Shi, Y.-X., Ni, X.-B., Liao, Y.-S., Li, W.-J., Jiang, B.-G., Wei, W., Yuan, T.-T., Zheng, K., Cui, X.-M., Li, J., Pei, G.-Q., Qiang, X., … Cao, W.-C. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815), 282–285. 10.1038/s41586-020-2169-0
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–228. https://doi.org/10.1038/s41586-020-2180-5
  • Lau, S. K. P., Woo, P. C. Y., Li, K. S. M., Huang, Y., Wang, M., Lam, C. S. F., Xu, H., Guo, R., Chan, K.-H., Zheng, B.-J., & Yuen, K.-Y. (2007). Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology, 367(2), 428–439. https://doi.org/10.1016/j.virol.2007.06.009
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562–569. https://doi.org/10.1038/s41564-020-0688-y
  • Li, F. (2008). Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. Journal of Virology, 82(14), 6984–6991. https:// https://doi.org/10.1128/JVI.00442-08
  • Li, F. (2012). Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. Journal of Virology, 86(5), 2856–2858. https://doi.org/10.1128/JVI.06882-11
  • Li, F. (2015). Receptor recognition mechanisms of coronaviruses: A decade of structural studies. Journal of Virology, 89(4), 1954–1964. https://doi.org/10.1128/JVI.02615-14
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  • Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (New York, NY), 309(5742), 1864–1868. https://doi.org/10.1126/science.1113611 https://doi.org/10.1126/science.1116480
  • Li, W., Sui, J., Huang, I.-C., Kuhn, J. H., Radoshitzky, S. R., Marasco, W. A., Choe, H., & Farzan, M. (2007). The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology, 367(2), 367–374. 10.1016/j.virol.2007.04.035
  • Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., Wong, S.-K., Huang, I.-C., Xu, K., Vasilieva, N., Murakami, A., He, Y., Marasco, W. A., Guan, Y., Choe, H., & Farzan, M. (2005). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. The EMBO Journal, 24(8), 1634–1643. https://doi.org/10.1038/sj.emboj.7600640
  • Lin, H.-X., Feng, Y., Tu, X., Zhao, X., Hsieh, C.-H., Griffin, L., Junop, M., & Zhang, C. (2011). Characterization of the spike protein of human coronavirus NL63 in receptor binding and pseudotype virus entry. Virus Research, 160(1–2), 283–293. 10.1016/j.virusres.2011.06.029
  • Lin, H.-X., Feng, Y., Wong, G., Wang, L., Li, B., Zhao, X., Li, Y., Smaill, F., & Zhang, C. (2008). Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD–ACE2 receptor interaction. The Journal of General Virology, 89(Pt 4), 1015–1024. 10.1099/vir.0.83331-0
  • Long, J., Gallagher, T. R. A., Cavey, J. R., Sheppard, P. W., Ralston, S. H., Layfield, R., & Searle, M. S. (2008). Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. The Journal of Biological Chemistry, 283(9), 5427–5440. https://doi.org/10.1074/jbc.M704973200
  • Madura, K. (2002). The ubiquitin-associated (UBA) domain: On the path from prudence to prurience. Cell Cycle (Georgetown, Tex.), 1(4), 235–244. https://doi.org/10.4161/cc.1.4.130
  • Masters, P. S. (2006). The molecular biology of coronaviruses. Advances in Virus Research, 66, 193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
  • Milewska, A., Nowak, P., Owczarek, K., Szczepanski, A., Zarebski, M., Hoang, A., Berniak, K., Wojarski, J., Zeglen, S., Baster, Z., Rajfur, Z., & Pyrc, K. (2018). Entry of human coronavirus NL63 into the cell. Journal of Virology, 92(3), e01933–17. https://doi.org/10.1128/JVI.01933-17
  • Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., & Pyrc, K. (2014). Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. Journal of Virology, 88(22), 13221–13230. https://doi.org/10.1128/JVI.02078-14
  • Minghui, L., Simonetti, F. L., Goncearenco, A., & Panchenko, A. R. (2016). MutaBind estimates and interprets theeffects of sequence variants on protein–protein interactions. Nucleic Acids Research, 44(W1), W494–W501. https://doi.org/10.1093/nar/gkw374
  • Mueller, T. D., & Feigon, J. (2002). Solution structures of UBA domains reveal a conserved hydrophobic surface for protein–protein interactions. Journal of Molecular Biology, 319(5), 1243–1255. https://doi.org/10.1016/S0022-2836(02)00302-9
  • Nasir, A., Forterre, P., Kim, K. M., & Caetano-Anollés, G. (2014). The distribution and impact of viral lineages in domains of life. Frontiers in Microbiology, 5, 194. https://doi.org/10.3389/fmicb.2014.00194
  • Ng, W. M., Stelfox, A. J., & Bowden, T. A. (2020). Unraveling virus relationships by structure-based phylogenetic classification. Virus Evolution, 6, veaa003. https://doi.org/10.1093/ve/veaa003
  • Ohno, A., Jee, J. G., Fujiwara, K., Tenno, T., Goda, N., Tochio, H., Kobayashi, H., Hiroaki, H., & Shirakawa, M. (2005). Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. Structure (London, England: 1993), 13(4), 521–532. https://doi.org/10.1016/j.str.2005.01.011
  • Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., & Ren, L. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11, 2020. https://doi.org/10.1038/s41467-020-15562-9
  • Pan, D., Nolan, J., Williams, K. H., Robbins, M. J., & Weber, K. A. (2017). Abundance and distribution of microbial cells and viruses in an alluvial aquifer. Frontiers in Microbiology, 8, 1199. https://doi.org/10.3389/fmicb.2017.01199
  • Pickart, C. M., & Cohen, R. E. (2004). Proteasomes and their kin: Proteases in the machine age. Nature Reviews. Molecular Cell Biology, 5(3), 177–187. https://doi.org/10.1038/nrm1336
  • Qu, X.-X., Hao, P., Song, X.-J., Jiang, S.-M., Liu, Y.-X., Wang, P.-G., Rao, X., Song, H.-D., Wang, S.-Y., Zuo, Y., Zheng, A.-H., Luo, M., Wang, H.-L., Deng, F., Wang, H.-Z., Hu, Z.-H., Ding, M.-X., Zhao, G.-P., & Deng, H.-K. (2005). Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. The Journal of Biological Chemistry, 280(33), 29588–29595. 10.1074/jbc.M500662200
  • Raasi, S., Varadan, R., Fushman, D., & Pickart, C. M. (2005). Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nature Structural & Molecular Biology, 12(8), 708–714. https://doi.org/10.1038/nsmb962
  • Sanjuán, R., & Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cellular & Molecular Life Sciences: CMLS, 73(23), 4433–4448. https://doi.org/10.1007/s00018-016-2299-6
  • Sano, E., Carlson, S., Wegley, L., & Rohwer, F. (2004). Movement of viruses between biomes. Applied Environmental Microbiology, 70(10), 5842–5846. https://doi.org/10.1128/AEM.70.10.5842-5846.2004
  • Shi, M., Lin, X.-D., Chen, X., Tian, J.-H., Chen, L.-J., Li, K., Wang, W., Eden, J.-S., Shen, J.-J., Liu, L., Holmes, E. C., & Zhang, Y.-Z. (2018). The evolutionary history of vertebrate RNA viruses. Nature, 556(7700), 197–202. https://doi.org/10.1038/s41586-018-0012-7
  • Sobolev, V., Sorokine, A., Prilusky, J., Abola, E. E., & Edelman, M. (1999). Automated analysis of interatomic contacts in proteins. Bioinformatics (Oxford, England), 15(4), 327–332. https://doi.org/10.1093/bioinformatics/15.4.327
  • Song, W., Gui, M., Wang, X., & Xiang, Y. (2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathogens, 14(8), e1007236. https://doi.org/10.1371/journal.ppat.1007236
  • Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology, 24(6), 490–502. https://doi.org/10.1016/j.tim.2016.03.003
  • Tse, M. K., Hui, S. K., Yang, Y., Yin, S.-T., Hu, H.-Y., Zou, B., Wong, B. C. Y., & Sze, K. H. (2011). Structural analysis of the UBA domain of X-linked inhibitor of apoptosis protein reveals different surfaces for ubiquitin-binding and self-association. PLoS ONE, 6(12), e28511. https://doi.org/10.1371/journal.pone.0028511
  • Van Blerkom, L. M. (2003). Role of viruses in human evolution. American Journal of Physical Anthropology, Suppl 37, 14–46. https://doi.org/10.1002/ajpa.10384
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94, e00127–20. https://doi.org/10.1128/JVI.00127-20
  • Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., & Jiang, C. (2008). SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Research, 18(2), 290–301. https://doi.org/10.1038/cr.2008.15
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., & Zhang, Z. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181, 1â11. https://doi.org/10.1016/j.cell.2020.03.045
  • Wang, S., Guo, F., Liu, K., Wang, H., Rao, S., Yang, P., & Jiang, C. (2008). Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Research, 136(1–2), 8–15. https://doi.org/10.1016/j.virusres.2008.03.004
  • Weiss, S. R., & Navas-Martin, S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology & Molecular Biology Reviews: MMBR, 69(4), 635–664. https://doi.org/10.1128/MMBR.69.4.635-664.2005
  • Wilkinson, C. R., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., Semple, C., & Gordon, C. (2001). Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nature Cell Biology, 3(10), 939–943. https://doi.org/10.1038/ncb1001-939
  • Wimley, W. C., & White, S. H. (1996). Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Structural Biology, 3(10), 842–848. https://doi.org/10.1038/nsb1096-842
  • Woo, P. C. Y., Lau, S. K. P., Lam, C. S. F., Lau, C. C. Y., Tsang, A. K. L., Lau, J. H. N., Bai, R., Teng, J. L. L., Tsang, C. C. C., Wang, M., Zheng, B.-J., Chan, K.-H., & Yuen, K.-Y. (2012). Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of Virology, 86(7), 3995–4008. https://doi.org/10.1128/JVI.06540-11
  • Wu, K., Li, W., Peng, G., & Li, F. (2009). Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 19970–19974. https://doi.org/10.1073/pnas.0908837106
  • Wu, K., Peng, G., Wilken, M., Geraghty, R. J., & Li, F. (2012). Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. The Journal of Biological Chemistry, 287(12), 8904–8911. https://doi.org/10.1074/jbc.M111.325803
  • Yang, X.-L., Hu, B., Wang, B., Wang, M.-N., Zhang, Q., Zhang, W., Wu, L.-J., Ge, X.-Y., Zhang, Y.-Z., Daszak, P., Wang, L.-F., & Shi, Z.-L. (2015). Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. Journal of Virology, 90(6), 3253–3256. 10.1128/JVI.02582-15
  • Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R. S., Jiang, S., & Li, F. (2014). Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12516–12521. http://www.pnas.org/cgi/doi/10.1073/pnas.1405889111 https://doi.org/10.1073/pnas.1405889111
  • Yi, C., Sun, X., Ye, J., Ding, L., Liu, M., Yang, Z., Lu, X., Zhang, Y., Ma, L., Gu, W., Qu, A., Xu, J., Shi, Z., Ling, Z., & Sun, B. (2020). Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cellular & Molecular Immunology, 17(6), 621–630. https://doi.org/10.1038/s41423-020-0458-z
  • Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., & Wang, Q. (2017). Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nature Communications, 8, 15092. https://doi.org/10.1038/ncomms15092
  • Zhang, N., Chen, Y., Lu, H., Zhao, F., Alvarez, R. V., Goncearenco, A., Panchenko, A. R., & Li, M. (2020). MutaBind2: Predicting the impacts of single and multiple mutations on protein–protein interactions. iScience, 23(3), 100939. https://doi.org/10.1016/j.isci.2020.100939
  • Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Currents Biology, 30(7), 1346–1351. https://doi.org/10.1016/j.cub.2020.03.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.