462
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design, synthesis, DFT calculations, molecular docking and antimicrobial activities of novel cobalt, chromium metal complexes of heterocyclic moiety-based 1,3,4-oxadiazole derivatives

ORCID Icon, , , , , & show all
Pages 11837-11850 | Received 14 May 2021, Accepted 02 Aug 2021, Published online: 17 Aug 2021

References

  • Abd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S., & Ahmed, A.-S F. F. (2016). Novel 1,3,4-oxadiazole/oxime hybrids: Synthesis, docking studies and investigation of anti-inflammatory, ulcerogenic liability and analgesic activities. Bioorganic Chemistry, 69, 48–63. https://doi.org/10.1016/j.bioorg.2016.09.005
  • Adib, G. (2019). In silico exploration of aryl halides analogues as checkpoint kinase 1 ınhibitors by using 3D QSAR, molecular docking study, and ADMET screening. Advanced Pharmaceutical Bulletin, 9(1), 84–92. https://doi.org/10.15171/jcvtr.2015.24
  • Bader, R. (1994). Atoms in molecules: A quantum theory. Oxford University Press.
  • Bankar, G. R., Nandakumar, K., Nayak, P. G., Thakur, A., Chamallamudi, M. R., & Nampurath, G. K. (2009). Vasorelaxant effect in rat aortic rings through calcium channel blockage: A preliminary in vitro assessment of a 1,3,4-oxadiazole derivative. Chemico-Biological İnteractions, 181(3), 377–382. https://doi.org/10.1016/j.cbi.2009.07.014
  • Baumann, M., Baxendale, I. R., Ley, S. V., & Nikbin, N. (2011). An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein Journal of Organic Chemistry, 7, 442–495. https://doi.org/10.3762/bjoc.7.57
  • Ben El Ayouchia, H., Bahsis, L., Anane, H., Domingo, L. R., & Stiriba, S.-E. (2018). Understanding the mechanism and regioselectivity of the copper (i) catalyzed [3 + 2] cycloaddition reaction between azide and alkyne: A systematic DFT study. RSC Advances, 8(14), 7670–7678. https://doi.org/10.1039/C7RA10653J
  • Bernadette Amali, I., Kesavan, M. P., Vijayakumar, V., Indra Gandhi, N., Rajesh, J., & Rajagopal, G. (2019). Structural analysis, antimicrobial and cytotoxic studies on newmetal(II) complexes containing N2O2 donor Schiff base ligand. Journal of Molecular Structure, 1183, 342–350. https://doi.org/10.1016/j.molstruc.2019.02.0050022-2860
  • Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P., & Mokale, V. J. (2008). Design, synthesis and evaluation of antiinflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2-thiol and Schiff bases of diclofenac acid as nonulcerogenic derivatives. Bioorganic & Medicinal Chemistry, 16(4), 1822–1831. https://doi.org/10.1016/j.bmc.2007.11.014
  • Bhardwaj, Y. R., Pareek, A., Jain, V., & Kishore, D. (2014). Chemical delivery systems and soft drugs: Retrometabolic approaches of drug design. Saudi Pharmaceutical Journal, 22(4), 290–302. https://doi.org/10.1016/j.jsps.2013.04.004
  • Cao, Y. Y., Wang, W. W., & Du, X. H. (2019). Synthesis, crystal structure and herbicidal activity of methyl (E)-α(Methoxyimino)-2-((4-(3-chloro-5-(trifluoromethyl)pyridine-2-yl)phenoxy)methyl)benzeneacetate. Jiegou Huaxue, 38(7), 1123–1128. https://doi.org/10.14102/j.cnki.0254-5861.2011-2210
  • Crennell, S. J., Garman, E. F., Philippon, C., Vasella, A., Laver, W. G., Vimr, E. R., & Taylor, G. L. (1996). The structures of Salmonella typhimurium LT2 neuraminidase and its complexes with three inhibitors at high resolution. Journal of Molecular Biology, 259(2), 264–280. https://doi.org/10.1006/jmbi.1996.0318
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(March), 42717. https://doi.org/10.1038/srep42717
  • Domingo, L. R., & Pérez, P. (2011). The nucleophilicity N index in organic chemistry. Organic & Biomolecular Chemistry, 9(20), 7168–7175. https://doi.org/10.1039/c1ob05856h
  • Domingo, L. R., Chamorro, E., & Pérez, P. (2008). Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. The Journal of Organic Chemistry, 73(12), 4615–4624. https://doi.org/10.1021/jo800572a
  • El-Gahami, M. A., Salam, A. A., & Albishri, H. M. (2015). Synthesis, magnetic, spectral and antimicrobial activity of new Schiff bases complexes derived from 1, 2, 4-triazole-5-thione. J. Mater. Environ. Sci., 6, 2886–2894.
  • Erdogdu, Y., Manimaran, D., Güllüoǧlu, M. T., Amalanathan, M., Hubert Joe, I., & Yurdakul, S. (2013). FT-IR, FT-Raman, NMR spectra and DFT simulations of 4-(4-fluoro-phenyl)-1H-imidazole. Optics and Spectroscopy, 114(4), 525–536. https://doi.org/10.1134/S0030400X13040073
  • Frisch, M. J. (2009). Gaussian 09. Gaussian, Inc., Wallin.
  • Gup, R., Giziroglu, E., & Kırkan, B. (2007). Synthesis and spectroscopic properties of new azo-dyes and azo-metal complexes derived from barbituric acid and aminoquinoline. Dyes and pigments, 73(1), 40–46.
  • Hurley, D., McCusker, M. P., Fanning, S., & Martins, M. (2014). Salmonella-host interactions - modulation of the host innate immune system. Frontiers in İmmunology, 5(OCT), 481. https://doi.org/10.3389/fimmu.2014.00481
  • Ibrahim, M. T., Uzairu, A., Shallangwa, G. A., & Ibrahim, A. (2020). In-silico studies of some oxadiazoles derivatives as anti-diabetic compounds. Journal of King Saud University - Science, 32(1), 423–432. https://doi.org/10.1016/j.jksus.2018.06.006
  • Khalilullah, H., Khan, S., Nomani, M. S., & Ahmed, B. (2016). Synthesis, characterization and antimicrobial activity of benzodioxane ring containing 1,3,4-oxadiazole derivatives. Arabian Journal of Chemistry, 9, S1029–S1035. https://doi.org/10.1016/j.arabjc.2011.11.009
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations ıncluding exchange and correlation effects. Physical Review, 140(4A), A1133–1138. https://doi.org/10.1103/PhysRev.140.A1133
  • Lee, J.-Y., Jeong, K.-W., Shin, S., Lee, J.-U., & Kim, Y. (2012). Discovery of novel selective inhibitors of Staphylococcus aureus β-ketoacyl acyl carrier protein synthase III. European Journal of Medicinal Chemistry, 47(1), 261–269. https://doi.org/10.1016/j.ejmech.2011.10.052
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Murcia, R. A., Leal, S. M., Roa, M. V., Nagles, E., Muñoz-Castro, A., & Hurtado, J. J. (2018). Development of antibacterial and antifungal triazole chromium (III) and cobalt (II) complexes: Synthesis and biological activity evaluations. Molecules, 23(8), 1–16. https://doi.org/10.3390/molecules23082013
  • Omar, F. A., Mahfouz, N. M., & Rahman, M. A. (1996). Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. European Journal of Medicinal Chemistry, 31(10), 819–825. 83976-6. https://doi.org/10.1016/0223-5234(96)
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516. https://doi.org/10.1021/ja00364a005
  • Parr, R. G., & Weitao, Y. (1994). Density-functional theory of atoms and molecules. Oxford University Press.
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Parra, M., Hidalgo, P., Carrasco, E., Barberá, J., & Silvino, L. (2006). New 1,2,4- and 1,3,4-oxadiazole materials: Synthesis, and mesomorphic and luminescence properties. Liquid Crystals, 33(8), 875–882. https://doi.org/10.1080/02678290600871614
  • Patel, K. D., Prajapati, S. M., Panchal, S. N., & Patel, H. D. (2014). Review of synthesis of 1,3,4-oxadiazole derivatives. Synthetic Communications, 44(13), 1859–1875. https://doi.org/10.1080/00397911.2013.879901
  • Peressi, M., Fornari, M., Degironcoli, S., Desantis, L., & Baldereschi, A. (2000). Coordination defects in amorphous silicon and hydrogenated amorphous silicon: A characterization from first-principles calculations. Philosophical Magazine B, 80(4), 515–521. https://doi.org/10.1080/13642810008209759
  • Pérez, P., Domingo, L. R., José Aurell, M., & Contreras, R. (2003). Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron, 59(17), 3117–3125. https://doi.org/10.1016/S0040-4020(03)00374-0
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331
  • Price, A. C., Rock, C. O., & White, S. W. (2003). The 1.3-Angstrom-resolution crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Streptococcus pneumoniae. Journal of Bacteriology, 185(14), 4136–4143. https://doi.org/10.1128/JB.185.14.4136-4143.2003
  • Qiu, X., Janson, C. A., Smith, W. W., Head, M., Lonsdale, J., & Konstantinidis, A. K. (2001). Refined structures of beta-ketoacyl-acyl carrier protein synthase III. Journal of Molecular Biology, 307(1), 341–356. https://doi.org/10.1006/jmbi.2000.4457
  • Rohand, T., & Sopbué Fondjo, E. (2018). Synthesis of novel structurally diverse N-mono- and N,N′-disubstituted benzimidazol-2-one derivatives by the alkylations of 1,3-dihydro-2H-benzimidazol-2-one with some alkyl halides under transfer catalysis conditions. Journal of Heterocyclic Chemistry, 55(10), 2309–2314. https://doi.org/10.1002/jhet.3289
  • Rohand, T., Mkpenie, V. N., El Haddad, M., & Markó, I. E. (2019a). A novel ıron-catalyzed one-pot synthesis of 3-amino-1,2,4-triazoles. Journal of Heterocyclic Chemistry, 56(2), 690–695. https://doi.org/10.1002/jhet.3450
  • Rohand, T., Ramli, Y., Baruah, M., Budka, J., & Das, A. M. (2019b). Synthesis, structure elucidation and antimicrobial properties of new bis-1,3,4-oxadiazole derivatives. Pharmaceutical Chemistry Journal, 53(2), 150–154. https://doi.org/10.1007/s11094-019-01969-2
  • Salassa, G., & Terenzi, A. (2019). Metal complexes of oxadiazole ligands: An overview. International Journal of Molecular Sciences, 20(14), 3483. https://doi.org/10.3390/ijms20143483
  • Santosh, R., Prabhu, A., Selvam, M. K., Krishna, P. M., Nagaraja, G. K., & Rekha, P. D. (2019). Design, synthesis, and pharmacology of some oxadiazole and hydroxypyrazoline hybrids bearing thiazoyl scaffold: Antiproliferative activity, molecular docking and DNA binding studies. Heliyon, 5(2), e01255. https://doi.org/10.1016/j.heliyon.2019.e01255
  • Sbi, S., Mkpenie, V., Tanemura, K., & Rohand, T. (2020). Ligand-free and solvent-free synthesis of 1,3-disubstituted naphthalenes through stille coupling. Synlett, 31(09), 903–906. https://doi.org/10.1055/s-0039-1690850
  • Shang, Z.-H., Sun, J.-N., Guo, J.-S., Sun, Y.-Y., Weng, W.-Z., Zhang, Z.-X., Li, Z.-J., & Zhu, Y.-P. (2020). Facile synthesis of 1,3,4-oxadiazoles via iodine promoted oxidative annulation of methyl-azaheteroarenes and hydrazides. Tetrahedron, 76(6), 130887. https://doi.org/10.1016/j.tet.2019.130887
  • Shanmugaiah, M. K., Mokkandi Palsamy, K., Lokesh, R., N, I. G., Mitu, L., Jegathalaprathaban, R., & Gurusamy, R. (2018). Ternary Copper (II) complex based chemical probes for DNA targeting: Cytotoxic activity under visible light. Applied Organometallic Chemistry, 33(3), e4762. https://doi.org/10.1002/aoc.4762
  • Sirohiwal, A., Hathwar, V. R., Dey, D., & Chopra, D. (2017). Investigation of chemical bonding in ın situ cryocrystallized organometallic liquids. Chemphyschem, 18(20), 2859–2863. https://doi.org/10.1002/cphc.201700585
  • Sondhi, S. M., Kumar, S., Kumar, N., & Roy, P. (2012). Synthesis anti-inflammatory and anticancer activity evaluation of some pyrazole and oxadiazole derivatives. Medicinal Chemistry Research, 21(10), 3043–3052. https://doi.org/10.1007/s00044-011-9850-7
  • Song, X., Yang, Y., Zhao, J., & Chen, Y. (2014). Synthesis and antibacterial activity of cinnamaldehyde acylhydrazone with a 1,4-benzodioxan fragment as a novel class of potent β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitor. Chemical & Pharmaceutical Bulletin, 62(11), 1110–1118. https://doi.org/10.1248/cpb.c14-00485
  • Sybyl-X. (2012). Molecular modeling software packages, version2.0. TRIPOS Associates, Inc.
  • Tony, C. (1992). Bacterial sialidases - roles in pathogenicity and nutrition. Glycobiology, 2(6), 509–521. http://glycob.oxfordjournals.org/
  • Vidya Rani, C., Kesavan, M. P., Haseena, S., Varatharaj, R., Rajesh, J., & Rajagopal, G. (2020). Bidentate Schiff base ligands appended metal(II) complexes as probes of DNA and plasma protein: In silico molecular modelling studies. Applied Biochemistry and Biotechnology, 191(4), 1515–1532. https://doi.org/10.1007/s12010-020-03270-5
  • Wang, S., Liu, H., Wang, X., Lei, K., Li, G., Li, J., Liu, R., & Quan, Z. (2020). Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor. European Journal of Medicinal Chemistry, 206, 112672. https://doi.org/10.1016/j.ejmech.2020.112672
  • Wu, W., Chen, Q., Tai, A., Jiang, G., & Ouyang, G. (2015). Synthesis and antiviral activity of 2-substituted methylthio-5-(4-amino-2-methylpyrimidin-5-yl)-1,3,4-oxadiazole derivatives. Bioorganic & Medicinal Chemistry Letters, 25(10), 2243–2246. https://doi.org/10.1016/j.bmcl.2015.02.069
  • Yang, W., & Parr, R. G. (1985). Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 82(20), 6723–6726. https://doi.org/10.1073/pnas.82.20.6723
  • Zheng, Z., Liu, Q., Kim, W., Tharmalingam, N., Fuchs, B. B., & Mylonakis, E. (2018). Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofilm of Staphylococcus aureus. Future Medicinal Chemistry, 10(3), 283–296. https://doi.org/10.4155/fmc-2017-0159

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.