750
Views
24
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes

, , ORCID Icon & ORCID Icon
Pages 12008-12021 | Received 17 Apr 2021, Accepted 07 Aug 2021, Published online: 23 Aug 2021

References

  • Abdullah, K., Arefeen, A., Shamsi, A., Alhumaydhi, F. A., & Naseem, I. (2021). Insight into the In vitro antiglycation and in vivo antidiabetic effects of thiamine: Implications of vitamin B1 in controlling diabetes. ACS Omega, 6(19), 12605–12614. https://doi.org/10.1021/acsomega.1c00631
  • Akbaba, Y., Türkeş, C., Polat, L., Söyüt, H., Sahin, E., Menzek, A., Göksu, S., & Beydemir, S. (2013). Synthesis and paroxonase activities of novel bromophenols. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(5), 1073–1079. https://doi.org/10.3109/14756366.2012.715287
  • Akocak, S., Taslimi, P., Lolak, N., Işık, M., Durgun, M., Budak, Y., Türkeş, C., Gülçin, İ., & Beydemir, Ş. (2021). Synthesis, characterization, and inhibition study of novel substituted phenylureido sulfaguanidine derivatives as α‐glycosidase and cholinesterase inhibitors. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.202000958
  • Alım, Z., & Beydemir, Ş. (2012). Effects of some anti-neoplastic drugs on sheep liver sorbitol dehydrogenase. Archives of Physiology and Biochemistry, 118(5), 244–252. https://doi.org/10.3109/13813455.2012.688055
  • Alim, Z., Kilinc, N., Sengul, B., & Beydemir, S. (2017a). Mechanism of capsaicin inhibition of aldose reductase activity. Journal of Biochemical and Molecular Toxicology, 31(7), e21898. https://doi.org/10.1002/jbt.21898
  • Alim, Z., Kilinç, N., Şengül, B., & Beydemir, Ş. (2017b). Inhibition behaviours of some phenolic acids on rat kidney aldose reductase enzyme: An in vitro study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 277–284. https://doi.org/10.1080/14756366.2016.1250752
  • Anwar, S., Mohammad, T., Shamsi, A., Queen, A., Parveen, S., Luqman, S., Hasan, G. M., Alamry, K. A., Azum, N., & Asiri, A. M. (2020). Discovery of hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: Implication in lung cancer therapy. Biomedicines, 8(5), 119. https://doi.org/10.3390/biomedicines8050119
  • Anwar, S., Shamsi, A., Shahbaaz, M., Queen, A., Khan, P., Hasan, G. M., Islam, A., Alajmi, M. F., Hussain, A., & Ahmad, F. (2020). Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-65648-z.
  • Araújo, A., De Melo, M., Rabelo, T., Nunes, P., Santos, S., Serafini, M., Santos, M., Quintans-Júnior, L., & Gelain, D. (2015). Review of the biological properties and toxicity of usnic acid. Natural Product Research, 29(23), 2167–2180. https://doi.org/10.1080/14786419.2015.1007455
  • Askin, S., Tahtaci, H., Türkeş, C., Demir, Y., Ece, A., Çiftçi, G. A., & Beydemir, Ş. (2021). Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo [2,1-b][1,3,4] thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorganic Chemistry, 113, 105009. https://doi.org/10.1016/j.bioorg.2021.105009
  • Aslan, H. E., & Beydemir, Ş. (2017). Phenolic compounds: The inhibition effect on polyol pathway enzymes. Chemico-Biological Interactions, 266, 47–55. https://doi.org/10.1016/j.cbi.2017.01.021
  • Aydin, B. O., Anil, D., & Demir, Y. (2021). Synthesis of N‐alkylated pyrazolo [3,4‐d] pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Archiv der Pharmazie, 354(5), 2000330. https://doi.org/10.1002/ardp.202000330
  • Bayrak, S., Öztürk, C., Demir, Y., Alım, Z., & Küfrevioglu, Ö. İ. (2020). Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein and Peptide Letters, 27(3), 187–192. https://doi.org/10.2174/0929866526666191002142301
  • Beydemir, Ş., Türkeş, C., & Yalçın, A. (2021). Gadolinium-based contrast agents: In vitro paraoxonase 1 inhibition, in silico studies. Drug and Chemical Toxicology, 44(5), 508–517. https://doi.org/10.1080/01480545.2019.1620266
  • Boustie, J., & Grube, M. (2005). Lichens – A promising source of bioactive secondary metabolites. Plant Genetic Resources, 3(2), 273–287. https://doi.org/10.1079/PGR200572
  • Bradford, N. (1976). A rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Caglayan, C., Demir, Y., Kucukler, S., Taslimi, P., Kandemir, F. M., & Gulçin, İ. (2019). The effects of hesperidin on sodium arsenite‐induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. Journal of Food Biochemistry, 43(2), e12720. https://doi.org/10.1111/jfbc.12720
  • Çağlayan, C., Taslimi, P., Demir, Y., Küçükler, S., Kandemir, F. M., & Gulçin, İ. (2019). The effects of zingerone against vancomycin‐induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22381. https://doi.org/10.1002/jbt.22381.
  • Cakmak, K. C., & Gülçin, İ. (2019). Anticholinergic and antioxidant activities of usnic acid – An activity-structure insight. Toxicology Reports, 6, 1273–1280. https://doi.org/10.1016/j.toxrep.2019.11.003
  • Cerelli, M. J., Curtis, D. L., Dunn, J. P., Nelson, P. H., Peak, T. M., & Waterbury, L. D. (1986). Antiinflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids. Journal of Medicinal Chemistry, 29(11), 2347–2351. https://doi.org/10.1021/jm00161a033
  • Ceylan, H., Demir, Y., & Beydemir, Ş. (2019). Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: An in vitro study. Protein and Peptide Letters, 26(5), 364–370. https://doi.org/10.2174/0929866526666190301115122
  • De Vries, K., Strydom, M., & Steenkamp, V. (2018). Bioavailability of resveratrol: Possibilities for enhancement. Journal of Herbal Medicine, 11, 71–77. https://doi.org/10.1016/j.hermed.2017.09.002
  • Demir, Y. (2019). The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against atherosclerosis. The Journal of Pharmacy and Pharmacology, 71(10), 1576–1583. https://doi.org/10.1111/jphp.13144
  • Demir, Y. (2020). Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Development Research, 81(5), 628–636. https://doi.org/10.1002/ddr.21667
  • Demir, Y., Balcı, N., & Gürbüz, M. (2019). Differential effects of selective serotonin reuptake inhibitors on paraoxonase-1 enzyme activity: An in vitro study. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 226, 108608. https://doi.org/10.1016/j.cbpc.2019.108608
  • Demir, Y., Duran, H. E., Durmaz, L., Taslimi, P., Beydemir, Ş., & Gulcin, I. (2020). The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: A perspective for metabolic disorders. Applied Biochemistry and Biotechnology, 190(2), 437–447. https://doi.org/10.1007/s12010-019-03099-7
  • Demir, Y., Durmaz, L., Taslimi, P., & Gulçin, İ. (2019). Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnology and Applied Biochemistry, 66(5), 781–786. https://doi.org/10.1002/bab.1781
  • Demir, Y., Işık, M., Gülçin, İ., & Beydemir, Ş. (2017). Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. Journal of Biochemical and Molecular Toxicology, 31(9), e21936. https://doi.org/10.1002/jbt.21935
  • Demir, Y., & Köksal, Z. (2020). Some sulfonamides as aldose reductase inhibitors: Therapeutic approach in diabetes. Archives of Physiology and Biochemistry, 1–6. https://doi.org/10.1080/13813455.2020.1742166.
  • Demir, Y., Özaslan, M. S., Duran, H. E., Küfrevioğlu, Ö. İ., & Beydemir, Ş. Ş. (2019). Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environmental Toxicology and Pharmacology, 70, 103195. https://doi.org/10.1016/j.etap.2019.103195
  • Demir, Y., Taslimi, P., Koçyiğit, Ü. M., Akkuş, M., Özaslan, M. S., Duran, H. E., Budak, Y., Tüzün, B., Gürdere, M. B., & Ceylan, M. (2020). Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α‐glycosidase and molecular docking studies. Archiv der Pharmazie, 353(12), 2000118. https://doi.org/10.1002/ardp.202000118
  • Demir, Y., Taslimi, P., Ozaslan, M. S., Oztaskin, N., Çetinkaya, Y., Gulçin, İ., Beydemir, Ş., & Goksu, S. (2018). Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Archiv der Pharmazie, 351(12), 1800263. https://doi.org/10.1002/ardp.201800263
  • Demir, Y., Türkeş, C., & Beydemir, Ş. Ş. (2020). Molecular docking studies and inhibition properties of some antineoplastic agents against paraoxonase-I. Anti-Cancer Agents in Medicinal Chemistry, 20(7), 887–896. https://doi.org/10.2174/1871520620666200218110645
  • Duffy, E. M., & Jorgensen, W. L. (2000). Prediction of properties from simulations: Free energies of solvation in hexadecane, octanol, and water. Journal of the American Chemical Society, 122(12), 2878–2888. https://doi.org/10.1021/ja993663t
  • Durgun, M., Türkeş, C., Işık, M., Demir, Y., Saklı, A., Kuru, A., Güzel, A., Beydemir, Ş., Akocak, S., Osman, S. M., AlOthman, Z., & Supuran, C. T. (2020). Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 950–962. https://doi.org/10.1080/14756366.2020.1746784
  • Erdemir, F., Celepci, D. B., Aktaş, A., Gök, Y., Kaya, R., Taslimi, P., Demir, Y., & Gulcin, I. (2019). Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorganic Chemistry, 91, 103134. https://doi.org/10.1016/j.bioorg.2019.103134
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gülcin, I. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86(3), 345–391. https://doi.org/10.1007/s00204-011-0774-2.
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3
  • Gündoğdu, S., Türkeş, C., Arslan, M., Demir, Y., & Beydemir, Ş. (2019). New isoindole‐1,3‐dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect, 4(45), 13347–13355. https://doi.org/10.1002/slct.201903458
  • He, J., Gao, H.-X., Yang, N., Zhu, X.-D., Sun, R.-B., Xie, Y., Zeng, C.-H., Zhang, J.-W., Wang, J.-K., Ding, F., Aa, J.-Y., & Wang, G.-J. (2019). The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacologica Sinica, 40(1), 86–97. https://doi.org/10.1038/s41401-018-0043-5
  • Hosokawa, I., Hosokawa, Y., Ozaki, K., & Matsuo, T. (2019). Carnosic acid inhibits CXCR3 ligands production in IL-27-stimulated human oral epithelial cells. Inflammation, 42(4), 1311–1316. https://doi.org/10.1007/s10753-019-00991-6
  • Işık, M., Akocak, S., Lolak, N., Taslimi, P., Türkeş, C., Gülçin, İ., Durgun, M., & Beydemir, Ş. (2020). Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3-diaryltriazene-substituted sulfathiazole derivatives. Archiv der Pharmazie, 353(9), e2000102. https://doi.org/10.1002/ardp.202000102
  • Işık, M., Beydemir, Ş., Demir, Y., Durgun, M., Türkeş, C., Nasır, A., Necip, A., & Akkuş, M. (2020). Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. International Journal of Biological Macromolecules, 146, 1111–1123. https://doi.org/10.1016/j.ijbiomac.2019.09.237
  • Işık, M., Demir, Y., Durgun, M., Türkeş, C., Necip, A., & Beydemir, Ş. (2020). Molecular docking and investigation of 4-(benzylideneamino)-and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. Chemical Papers, 74(5), 1395–1405. https://doi.org/10.1007/s11696-019-00988-3
  • Islam, M. T., da Mata, A. M. O. F., de Aguiar, R. P. S., Paz, M. F. C. J., de Alencar, M. V. O. B., Ferreira, P. M. P., & de Carvalho Melo‐Cavalcante, A. A. (2016). Therapeutic potential of essential oils focusing on diterpenes. Phytotherapy Research, 30(9), 1420–1444. https://doi.org/10.1002/ptr.5652
  • Istrefi, Q., Türkeş, C., Arslan, M., Demir, Y., Nixha, A. R., Beydemir, Ş., & Küfrevioğlu, Ö. İ. (2020). Sulfonamides incorporating ketene N, S‐acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors. Archiv der Pharmazie, 353(6), 1900383. https://doi.org/10.1002/ardp.201900383
  • Kalaycı, M., Türkeş, C., Arslan, M., Demir, Y., & Beydemir, Ş. (2021). Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Archiv der Pharmazie, 354(3), e2000282. https://doi.org/10.1002/ardp.202000282
  • Kilic, A., Beyazsakal, L., Işık, M., Türkeş, C., Necip, A., Takım, K., & Beydemir, Ş. (2020). Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. Journal of Organometallic Chemistry, 927, 121542. https://doi.org/10.1016/j.jorganchem.2020.121542
  • Kwong, S. P., & Wang, C. (2020). Review: Usnic acid-induced hepatotoxicity and cell death. Environmental Toxicology and Pharmacology, 80, 103493. https://doi.org/10.1016/j.etap.2020.103493
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
  • Liang, X., Yu, H., Hu, W., Zhang, L., Yang, W., Jin, C., Liu, D., & Zhang, R. (2018). Protective effect of carnosic acid and its semisynthetic derivatives against H2O2-induced neurotoxicity. Phytochemistry Letters, 27, 82–86. https://doi.org/10.1016/j.phytol.2018.06.014
  • Lipina, C., & Hundal, H. S. (2014). Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cellular Signalling, 26(11), 2343–2349. https://doi.org/10.1016/j.cellsig.2014.07.022
  • Lipinski, C. A., Lombardo, F., Dominy, B., & Feeney, P. (1997). In vitro models for selection of development candidates experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lolak, N., Akocak, S., Türkeş, C., Taslimi, P., Işık, M., Beydemir, Ş., Gülçin, İ., & Durgun, M. (2020). Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorganic Chemistry, 100, 103897. https://doi.org/10.1016/j.bioorg.2020.103897
  • McMacken, M., & Shah, S. (2017). A plant-based diet for the prevention and treatment of type 2 diabetes. Journal of Geriatric Cardiology, 14(5), 342–354. https://doi.org/10.11909/j.issn.1671-5411.2017.05.009
  • Nagib, A. M., Elsayed Matter, Y., Gheith, O. A., Refaie, A. F., Othman, N. F., & Al-Otaibi, T. (2019). Diabetic nephropathy following posttransplant diabetes mellitus. Experimental and Clinical Transplantation, 17(2), 138–146. https://doi.org/10.6002/ect.2018.0157
  • Özaslan, M. S., Demir, Y., Aslan, H. E., Beydemir, Ş., & Küfrevioğlu, Ö. İ. (2018). Evaluation of chalcones as inhibitors of glutathione S-transferase. Journal of Biochemical and Molecular Toxicology, 32(5), e22047. https://doi.org/10.1002/jbt.22047
  • Ozgencli, I., Budak, H., Ciftci, M., & Anar, M. (2018). Lichen acids may be used as a potential drug for cancer therapy; by inhibiting mitochondrial thioredoxin reductase purified from rat lung. Anti-Cancer Agents in Medicinal Chemistry, 18(11), 1599–1605. https://doi.org/10.2174/1871520618666180525095520
  • Patil, K. K., & Gacche, R. N. (2017). Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies. International Journal of Biological Macromolecules, 98, 730–738. https://doi.org/10.1016/j.ijbiomac.2017.01.129
  • Pauly, T. A., Ekstrom, J. L., Beebe, D. A., Chrunyk, B., Cunningham, D., Griffor, M., Kamath, A., Lee, S. E., Madura, R., Mcguire, D., Subashi, T., Wasilko, D., Watts, P., Mylari, B. L., Oates, P. J., Adams, P. D., & Rath, V. L. (2003). X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase. Structure, 11(9), 1071–1085. https://doi.org/10.1016/S0969-2126(03)00167-9
  • Sahin, E., Dabagoglu Psav, S., Avan, I., Candan, M., Sahinturk, V., & Koparal, A. (2019). Vulpinic acid, a lichen metabolite, emerges as a potential drug candidate in the therapy of oxidative stress-related diseases, such as atherosclerosis. Human & Experimental Toxicology, 38(6), 675–684. https://doi.org/10.1177/0960327119833745
  • Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharifi-Rad, M., Kumar, N. V. A., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of curcumin: A review of clinical trials. European Journal of Medicinal Chemistry, 163, 527–545. https://doi.org/10.1016/j.ejmech.2018.12.016
  • Şengül, B., & Beydemir, Ş. (2018). The interactions of cephalosporins on polyol pathway enzymes from sheep kidney. Archives of Physiology and Biochemistry, 124(1), 35–44. https://doi.org/10.1080/13813455.2017.1358749
  • Sever, B., Altıntop, M. D., Demir, Y., Çiftçi, G. A., Beydemir, Ş., & Özdemir, A. (2020). Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorganic Chemistry, 102, 104110. https://doi.org/10.1016/j.bioorg.2020.104110
  • Sever, B., Altıntop, M. D., Demir, Y., Pekdoğan, M., Çiftçi, G. A., Beydemir, Ş., & Özdemir, A. (2021). An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. Journal of Molecular Structure, 1224, 129446. https://doi.org/10.1016/j.molstruc.2020.129446
  • Sever, B., Altıntop, M. D., Demir, Y., Türkeş, C., Özbaş, K., Çiftçi, G. A., Beydemir, Ş., & Özdemir, A. (2021). A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chemistry, 19(1), 347–357. https://doi.org/10.1515/chem-2021-0032
  • Sever, B., Altıntop, M. D., Demir, Y., Yılmaz, N., Çiftçi, G. A., Beydemir, Ş., & Özdemir, A. (2021). Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chemico-Biological Interactions, 345, 109576. https://doi.org/10.1016/j.cbi.2021.109576
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y., & Beydemir, Ş. (2020). Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 163, 1970–1988. https://doi.org/10.1016/j.ijbiomac.2020.09.043
  • Shamsi, A., Ahmed, A., Khan, M. S., Husain, F. M., & Bano, B. (2020). Rosmarinic acid restrains protein glycation and aggregation in human serum albumin: Multi spectroscopic and microscopic insight – Possible Therapeutics Targeting Diseases. International Journal of Biological Macromolecules, 161, 187–193. https://doi.org/10.1016/j.ijbiomac.2020.06.048
  • Shamsi, A., Shahwan, M., Khan, M. S., Husain, F. M., Alhumaydhi, F. A., Aljohani, A. S., Rehman, M. T., Hassan, M. I., & Islam, A. (2021). Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega, 6(11), 7922–7930. https://doi.org/10.1021/acsomega.1c00527
  • Sheng, S., & Kong, F. (2012). Separation of antigens and antibodies by immunoaffinity chromatography. Pharmaceutical Biology, 50(8), 1038–1044. https://doi.org/10.3109/13880209.2011.653493
  • Tai, J., Cheung, S., Wu, M., & Hasman, D. (2012). Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine, 19(5), 436–443. https://doi.org/10.1016/j.phymed.2011.12.012
  • Taslimi, P., Işık, M., Türkan, F., Durgun, M., Türkeş, C., Gülçin, İ., & Beydemir, Ş. (2020). Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: Biological evaluation and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1790422.
  • Taslimi, P., Kandemir, F. M., Demir, Y., İleritürk, M., Temel, Y., Caglayan, C., & Gulçin, İ. (2019). The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. Journal of Biochemical and Molecular Toxicology, 33(6), e22313. https://doi.org/10.1002/jbt.22313
  • Türkeş, C. (2019a). Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: Chemotherapeutic drugs. Protein & Peptide Letters, 26(6), 392–402. https://doi.org/10.2174/0929866526666190226162225
  • Türkeş, C. (2019b). A potential risk factor for paraoxonase 1: In silico and in-vitro analysis of the biological activity of proton-pump inhibitors. The Journal of Pharmacy and Pharmacology, 71(10), 1553–1564. https://doi.org/10.1111/jphp.13141
  • Türkeş, C., Akocak, S., Işık, M., Lolak, N., Taslimi, P., Durgun, M., Gülçin, İ., Budak, Y., & Beydemir, Ş. (2021). Novel inhibitors with sulfamethazine backbone: Synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2021.1916599.
  • Türkeş, C., Arslan, M., Demir, Y., Cocaj, L., Nixha, A. R., & Beydemir, Ş. (2019). Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorganic Chemistry, 89, 103004. https://doi.org/10.1016/j.bioorg.2019.103004
  • Türkeş, C., & Beydemir, Ş. (2020). Inhibition of human serum paraoxonase-I with antimycotic drugs: In vitro and in silico Studies. Applied Biochemistry and Biotechnology, 190(1), 252–269. https://doi.org/10.1007/s12010-019-03073-3
  • Türkeş, C., Beydemir, Ş., & Küfrevioğlu, Ö. İ. (2019). In vitro and in silico studies on the toxic effects of antibacterial drugs as human serum paraoxonase 1 inhibitor. ChemistrySelect, 4(33), 9731–9736. https://doi.org/10.1002/slct.201902424
  • Türkeş, C., Demir, Y., & Beydemir, Ş. (2019). Anti-diabetic properties of calcium channel blockers: Inhibition effects on aldose reductase enzyme activity. Applied Biochemistry and Biotechnology, 189(1), 318–329. https://doi.org/10.1007/s12010-019-03009-x
  • Türkeş, C., Demir, Y., & Beydemir, Ş. (2021). Calcium channel blockers: Molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. Journal of Biomolecular Structure & Dynamics, 39(5), 1672–1680. https://doi.org/10.1080/07391102.2020.1736631
  • Türkeş, C., Söyüt, H., & Beydemir, Ş. (2014). Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress. Pharmacological Reports, 66(1), 74–80. https://doi.org/10.1016/j.pharep.2013.08.007
  • Türkeş, C., Söyüt, H., & Beydemir, Ş. (2015). Human serum paraoxonase-1 (hPON1): In vitro inhibition effects of moxifloxacin hydrochloride, levofloxacin hemihydrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(4), 622–628. https://doi.org/10.3109/14756366.2014.959511
  • Türkeş, C., Söyüt, H., & Beydemir, Ş. (2016). In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-I (hPON1) from human serum. Environmental Toxicology and Pharmacology, 42, 252–257. https://doi.org/10.1016/j.etap.2015.11.024
  • Xiong, Y., & Zhou, L. (2019). The signaling of cellular senescence in diabetic nephropathy. Oxidative Medicine and Cellular Longevity, 2019, 7495629. https://doi.org/10.1155/2019/7495629
  • Yaşar, Ü., Gönül, İ., Türkeş, C., Demir, Y., & Beydemir, Ş. (2021). Transition-metal complexes of bidentate Schiff-base ligands: In vitro and in silico evaluation as non-classical carbonic anhydrase and potential acetylcholinesterase inhibitors. ChemistrySelect, 6(29), 7278–7284. https://doi.org/10.1002/slct.202102082
  • Yousuf, M., Shamsi, A., Khan, P., Shahbaaz, M., AlAjmi, M. F., Hussain, A., Hassan, G. M., Islam, A., Rizwanul Haque, Q. M., & Hassan, M. (2020). Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. International Journal of Molecular Sciences, 21(10), 3526. https://doi.org/10.3390/ijms21103526
  • Zhang, L., Zhang, H., Zhao, Y., Li, Z., Chen, S., Zhai, J., Chen, Y., Xie, W., Wang, Z., Li, Q., Zheng, X., & Hu, X. (2013). Inhibitor selectivity between aldo-keto reductase superfamily members AKR1B10 and AKR1B1: Role of Trp112 (Trp111). FEBS Letters, 587(22), 3681–3686. https://doi.org/10.1016/j.febslet.2013.09.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.