347
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular modeling and dynamics simulation of alcohol dehydrogenase enzyme from high efficacy cellulosic ethanol-producing yeast mutant strain Pichia kudriavzevii BGY1-γm

, ORCID Icon &
Pages 12022-12036 | Received 20 Apr 2021, Accepted 07 Aug 2021, Published online: 23 Aug 2021

References

  • Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773
  • Aggarwal, N. K., Goyal, V., Saini, A., Yadav, A., & Gupta, R. (2017). Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. 3 Biotech, 7(3), 158. https://doi.org/10.1007/s13205-017-0755-0
  • Ajit, A., Sulaiman, A. Z., & Chisti, Y. (2017). Production of bioethanol by Zymomonas mobilis in high-gravity extractive fermentations. Food and Bioproducts Processing, 102, 123–135. https://doi.org/10.1016/j.fbp.2016.12.006
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Chamnipa, N., Thanonkeo, S., Klanrit, P., & Thanonkeo, P. (2018). The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Brazilian Journal of Microbiology, 49(2), 378–391. https://doi.org/10.1016/j.bjm.2017.09.002
  • Chen, W.-H., Lin, T.-S., Guo, G.-L., & Huang, W.-S. (2012). Ethanol production from rice straw hydrolysates by Pichia stipitis. Energy Procedia, 14, 1261–1266. https://doi.org/10.1016/j.egypro.2011.12.1086
  • Choudhary, J., Singh, S., & Nain, L. (2016). Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic Journal of Biotechnology, 21, 82–92. https://doi.org/10.1016/j.ejbt.2016.02.007
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Dalal, V., Dhankhar, P., Singh, V., Rakhaminov, G., Golemi-Kotra, D., & Kumar, P. (2021). Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. The Protein Journal, 40(2), 148–165. https://doi.org/10.1007/s10930-020-09953-6
  • Dalal, V., Kumar, P., Rakhaminov, G., Qamar, A., Fan, X., Hunter, H., Tomar, S., Golemi-Kotra, D., & Kumar, P. (2019). Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of Staphylococcus aureus. Journal of Molecular Biology, 431(17), 3107–3123. https://doi.org/10.1016/j.jmb.2019.06.019
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. http://www.pymol.org
  • Dhaliwal, S. S., Oberoi, H. S., Sandhu, S. K., Nanda, D., Kumar, D., & Uppal, S. K. (2011). Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresource Technology, 102(10), 5968–5975. https://doi.org/10.1016/j.biortech.2011.02.015
  • Dhankhar, P., Dalal, V., Kotra, D. G., & Kumar, P. (2020). In-silico approach to identify novel potent inhibitors against GraR of S. aureus. Frontiers in Bioscience, 25, 1337–1360. https://doi.org/10.2741/4859
  • Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Archives of Biochemistry and Biophysics, 693, 108590. https://doi.org/10.1016/j.abb.2020.108590
  • Dhankhar, P., Dalal, V., Singh, V., Tomar, S., & Kumar, P. (2020). Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1852968
  • Dong, C., Qiao, J., Wang, X., Sun, W., Chen, L., Li, S., Wu, K., Ma, L., & Liu, Y. (2020). Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production. Biotechnology for Biofuels, 13(1), 1–9. https://doi.org/10.1186/s13068-020-01749-1
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.
  • El-Shishtawy, R. M., Mohamed, S. A., Asiri, A. M., Abu-Bakr, M. G., Ibrahim, I. H., & Al-Talhi, H. A. (2015). Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. BMC Biotechnology, 15(1), 1–13. https://doi.org/10.1186/s12896-015-0158-4
  • Fiser, A., Do, R. K. G., & Šali, A. (2000). Modeling of loops in protein structures. Protein Science, 9(9), 1753–1773. https://doi.org/10.1110/ps.9.9.1753
  • Fonseca, G. G., Heinzle, E., Wittmann, C., & Gombert, A. K. (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol, 79(3), 339–354. https://doi.org/10.1007/s00253-008-1458-6
  • Goihberg, E., Dym, O., Tel‐Or, S., Shimon, L., Frolow, F., Peretz, M., & Burstein, Y. (2008). Thermal stabilization of the protozoan Entamoeba histolytica alcohol dehydrogenase by a single proline substitution. Proteins: Structure, Function, and Bioinformatics, 72(2), 711–719. https://doi.org/10.1002/prot.21946
  • Gong, W., Dai, L., Zhang, H., Zhang, L., & Wang, L. (2018). A highly efficient xylan-utilization system in Aspergillus niger An76: A functional-proteomics study. Frontiers in Microbiology, 9, 430. https://doi.org/10.3389/fmicb.2018.00430
  • Gouet, P., Courcelle, E., Stuart, D. I., M., & Métoz, F. (1999). ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics, 15(4), 305–308. https://doi.org/10.1093/bioinformatics/15.4.305
  • Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Gupta, N., Dubey, A., & Tewari, L. (2009). High efficiency alcohol tolerant Saccharomyces isolates of Phoenix dactylifera for bioconversion of sugarcane juice into bioethanol. Journal of Scientific and Industrial Research, 68(5):401–405. http://nopr.niscair.res.in/handle/123456789/3792
  • Gupta, D. N., Dalal, V., Savita, B. K., Dhankhar, P., Ghosh, D. K., Kumar, P., & Sharma, A. K. (2021). In-silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus. Journal of Biomolecular Structure and Dynamics, 1–15.
  • Hahn-Hägerdal, B., Jeppsson, H., Skoog, K., & Prior, B. (1994). Biochemistry and physiology of xylose fermentation by yeasts. Enzyme and Microbial Technology, 16(11), 933–943. https://doi.org/10.1016/0141-0229(94)90002-7
  • Hashem, M., Hesham, A. E.-L., Alrumman, S. A., Alamri, S. A., & Moustafa, M. F. (2014). Indigenous yeasts of the rotten date fruits and their potentiality in bioethanol and single-cell protein production. International Journal of Agriculture and Biology, 16(4).
  • Ho, N. W., Chen, Z., & Brainard, A. P. (1998). Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 64(5), 1852–1859. https://doi.org/10.1128/AEM.64.5.1852-1859.1998
  • Holm, L., & Laakso, L. M. (2016). Dali server update. Nucleic Acids Research, 44(W1), W351–W355. https://doi.org/10.1093/nar/gkw357
  • Hurley, T. D., Bosron, W. F., Stone, C. L., & Amzel, L. M. (1994). Structures of three human beta alcohol dehydrogenase variants. Correlations with their functional differences. Journal of Molecular Biology, 239(3), 415–429. https://doi.org/10.1006/jmbi.1994.1382
  • Isono, N., Hayakawa, H., Usami, A., Mishima, T., & Hisamatsu, M. (2012). A comparative study of ethanol production by Issatchenkia orientalis strains under stress conditions. Journal of Bioscience and Bioengineering, 113(1), 76–78. https://doi.org/10.1016/j.jbiosc.2011.09.004
  • Jornitz, M., Cappia, J.-M., & Rao, G. (2011). Industrial biotechnology and commodity products: Single-use technologies for biomanufacturing, 641–652.
  • Kang, Q., Appels, L., Tan, T., & Dewil, R. (2014). Bioethanol from lignocellulosic biomass: Current findings determine research priorities. TheScientificWorldJournal, 2014, 298153. https://doi.org/10.1155/2014/298153
  • Kesari, P., Pratap, S., Dhankhar, P., Dalal, V., Mishra, M., Singh, P. K., Chauhan, H., & Kumar, P. (2020). Structural characterization and in-silico analysis of Momordica charantia 7S globulin for stability and ACE inhibition. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-58138-9
  • Kim, J.-H., Block, D. E., & Mills, D. A. (2010). Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 88(5), 1077–1085. https://doi.org/10.1007/s00253-010-2839-1
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Kordowska-Wiater, M., & Targoński, Z. (2001). Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Acta Microbiologica Polonica, 50(3-4), 291–299.
  • Kumar, P., Dalal, V., Kokane, A., Singh, S., Lonare, S., Kaur, H., Ghosh, D. K., Kumar, P., & Sharma, A. K. (2020). Mutation studies and structure-based identification of potential inhibitor molecules against periplasmic amino acid binding protein of Candidatus Liberibacter asiaticus (CLasTcyA). International Journal of Biological Macromolecules, 147, 1228–1238. https://doi.org/10.1016/j.ijbiomac.2019.09.250
  • Kumar, P., Dalal, V., Sharma, N., Kokane, S., Ghosh, D. K., Kumar, P., & Sharma, A. K. (2020). Characterization of the heavy metal binding properties of periplasmic metal uptake protein CLas-ZnuA2. Metallomics, 12(2), 280–289. https://doi.org/10.1039/c9mt00200f
  • Kumari, N., Dalal, V., Kumar, P., & Rath, S. N. (2020). Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1839558
  • Kumari, R., Dhankhar, P., & Dalal, V. (2021). Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. Journal of Molecular Graphics & Modelling, 105, 107870. https://doi.org/10.1016/j.jmgm.2021.107870
  • Kumari, R., & Dalal, V. (2021). Identification of potential inhibitors for LLM of Staphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. Journal of Biomolecular Structure and Dynamics, 1–15.
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., Chistyakov, V. V., & Thornton, J. M. (2005). PDBsum more: New summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Research, 33(Database issue), D266–D268. https://doi.org/10.1093/nar/gki001
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Li, C., Heatwole, J., Soelaiman, S., & Shoham, M. (1999). Crystal structure of a thermophilic alcohol dehydrogenase substrate complex suggests determinants of substrate specificity and thermostability. Proteins: Structure, Function, and Genetics, 37(4), 619–627. https://doi.org/10.1002/(SICI)1097-0134(19991201)37:4<619::AID-PROT12>3.0.CO;2-H
  • Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. https://doi.org/10.1016/j.pecs.2012.03.002
  • Longhurst, T., Tung, H., & Brady, C. (1990). Developmental regulation of the expression of alcohol dehydrogenase in ripening tomato fruits. Journal of Food Biochemistry, 14(6), 421–433. https://doi.org/10.1111/j.1745-4514.1990.tb00804.x
  • Lõoke, M., Kristjuhan, K., & Kristjuhan, A. (2011). Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques, 50(5), 325–328. https://doi.org/10.2144/000113672
  • Ma, K., He, M., You, H., Pan, L., Hu, G., Cui, Y., & Maeda, T. (2017). Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis. RSC Advances, 7(50), 31180–31188. https://doi.org/10.1039/C7RA04049K
  • Maciejewski, M. W., Schuyler, A. D., Gryk, M. R., Moraru, I. I., Romero, P. R., Ulrich, E. L., Eghbalnia, H. R., Livny, M., Delaglio, F., & Hoch, J. C. (2017). NMRbox: A resource for biomolecular NMR computation. Biophysical Journal, 112(8), 1529–1534. https://doi.org/10.1016/j.bpj.2017.03.011
  • Malik, A., Dalal, V., Ankri, S., & Tomar, S. (2019). Structural insights into Entamoeba histolytica arginase and structure-based identification of novel non-amino acid based inhibitors as potential antiamoebic molecules. The FEBS Journal, 286(20), 4135–4155. https://doi.org/10.1111/febs.14960
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nikodinovic-Runic, J., Guzik, M., Kenny, S. T., Babu, R., Werker, A., & Connor, K. E. (2013). Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Advances in applied microbiology (Vol. 84, pp. 139–200). Elsevier.
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Oberoi, H. S., Babbar, N., Sandhu, S. K., Dhaliwal, S. S., Kaur, U., Chadha, B., & Bhargav, V. K. (2012). Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. Journal of Industrial Microbiology & Biotechnology, 39(4), 557–566. https://doi.org/10.1007/s10295-011-1060-2
  • Pandit, S., Dalal, V., & Mishra, G. (2018). Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. Plant Physiology and Biochemistry, 128, 178–184. https://doi.org/10.1016/j.plaphy.2018.04.039
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pinyou, P., Youngvises, N., & Jakmunee, J. (2011). Flow injection colorimetric method using acidic ceric nitrate as reagent for determination of ethanol. Talanta, 84(3), 745–751. https://doi.org/10.1016/j.talanta.2011.01.078
  • Radhika, K., Ravinder, R., & Ravindra, P. (2011). Bioconversion of pentose sugars into ethanol: A review and future directions. Biotechnology and Molecular Biology Reviews, 6(1), 8–20. http://www.academicjournals.org/BMBR
  • Raj, S. B., Ramaswamy, S., & Plapp, B. V. (2014). Yeast alcohol dehydrogenase structure and catalysis. Biochemistry, 53(36), 5791–5803. https://doi.org/10.1021/bi5006442
  • Reid, V., & Salmon, D. (1955). The determination of ethanol by Colourimetric method. The Analyst, 80(953), 602. https://doi.org/10.1039/an9558000602
  • Saini, G., Dalal, V., Gupta, D. N., Sharma, N., Kumar, P., & Sharma, A. K. (2021). A molecular docking and dynamic approach to screen inhibitors against ZnuA1 of Candidatus Liberibacter asiaticus. Molecular Simulation, 1–16. https://doi.org/10.1080/08927022.2021.1888948
  • Saini, G., Dalal, V., Savita, B. K., Sharma, N., Kumar, P., & Sharma, A. K. (2019). Molecular docking and dynamic approach to virtual screen inhibitors against Esbp of Candidatus Liberibacter asiaticus. Journal of Molecular Graphics & Modelling, 92, 329–340. https://doi.org/10.1016/j.jmgm.2019.08.012
  • Sangwan, S., Sharma, M. K., Kumar, V., & Gupta, S. (2019). Potential hexose fermenting yeast for conversion of sugary and starchy raw materials into ethanol. Sugar Tech, 21(2), 320–328. https://doi.org/10.1007/s12355-018-0688-x
  • Schrödinger Release. (2016). 2: Maestro, Schrödinger, LLC, New York, NY, 2017. Received: February, 21, 2018.
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Selim, K. A., Easa, S. M., & El-Diwany, A. I. (2020). The xylose metabolizing yeast Spathaspora passalidarum is a promising genetic treasure for improving bioethanol production. Fermentation, 6(1), 33. https://doi.org/10.3390/fermentation6010033
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/msb.2011.75
  • Silva, J. P. A., Mussatto, S. I., Roberto, I. C., & Teixeira, J. A. (2011). Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank bioreactor. Brazilian Journal of Chemical Engineering, 28(1), 151–156. https://doi.org/10.1590/S0104-66322011000100016
  • Singh, N., Dalal, V., & Kumar, P. (2018). Structure based mimicking of phthalic acid esters (PAEs) and inhibition of hACMSD, an important enzyme of the tryptophan kynurenine metabolism pathway. International Journal of Biological Macromolecules, 108, 214–224. https://doi.org/10.1016/j.ijbiomac.2017.12.005
  • Singh, N., Dalal, V., & Kumar, P. (2020). Molecular docking and simulation analysis for elucidation of toxic effects of dicyclohexyl phthalate (DCHP) in glucocorticoid receptor-mediated adipogenesis. Molecular Simulation, 46(1), 9–21. https://doi.org/10.1080/08927022.2019.1662002
  • Singh, N., Dalal, V., Kumar, V., Sharma, M., & Kumar, P. (2019). Characterization of phthalate reductase from Ralstonia eutropha CH34 and in silico study of phthalate dioxygenase and phthalate reductase interaction. Journal of Molecular Graphics & Modelling, 90, 161–170. https://doi.org/10.1016/j.jmgm.2019.05.002
  • Singh, N., Dalal, V., Mahto, J. K., & Kumar, P. (2017). Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog. Journal of Hazardous Materials, 338, 11–22. https://doi.org/10.1016/j.jhazmat.2017.04.055
  • Soleimani, S. S., Adiguzel, A., & Nadaroglu, H. (2017). Production of bioethanol by facultative anaerobic bacteria. Journal of the Institute of Brewing, 123(3), 402–406. https://doi.org/10.1002/jib.437
  • Taber, R. L. (1998). The competitive inhibition of yeast alcohol dehydrogenase by 2,2,2‐trifluoroethanol. Biochemical Education, 26(3), 239–242. https://doi.org/10.1016/S0307-4412(98)00073-9
  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599. https://doi.org/10.1093/molbev/msm092
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  • Toivola, A., Yarrow, D., Van Den Bosch, E., Van Dijken, J. P., & Scheffers, W. A. (1984). Alcoholic fermentation of D-xylose by yeasts. Applied and Environmental Microbiology, 47(6), 1221–1223. https://doi.org/10.1128/aem.47.6.1221-1223.1984
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • van Gunsteren, W. F., Billeter, S., Eising, A., Hünenberger, P., Krüger, P., Mark, A. E., Scott, W. R. P., & Tironi, I. (1996). Biomolecular simulation: The GROMOS96 manual and user guide. VDF Hochschulverlag AG an der ETH Zürich, 86 p.
  • Vuralhan, Z., Morais, M. A., Tai, S.-L., Piper, M. D., & Pronk, J. T. (2003). Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 69(8), 4534–4541. https://doi.org/10.1128/AEM.69.8.4534-4541.2003
  • Wallner, B., & Elofsson, A. (2003). Can correct protein models be identified? Protein Science, 12(5), 1073–1086. https://doi.org/10.1110/ps.0236803
  • Webb, B., & Sali, A. (2014). Protein structure modeling with MODELLER protein structure prediction (pp. 1–15). Springer.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yu, Z., & Zhang, H. (2003). Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass and Bioenergy, 24(3), 257–262. https://doi.org/10.1016/S0961-9534(02)00147-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.