303
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Determining structure and action mechanism of LBF14 by molecular simulation

, , , , , , , & show all
Pages 11977-11988 | Received 15 Jan 2021, Accepted 05 Aug 2021, Published online: 23 Aug 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Armstrong, K. M., & Baldwin, R. L. (1993). Charged histidine affects α-helix stability at all positions in the helix by interacting with the backbone charges.
  • Avci, F. G., Sariyar Akbulut, B., & Ozkirimli, E. (2018). Membrane active peptides and their biophysical characterization. Biomolecules, 8(3), 77. https://doi.org/10.3390/biom8030077
  • Bansal, S., Su, W.-C., Budamagunta, M., Xiao, W., Ajena, Y., Liu, R., Voss, J. C., Carney, R. P., Parikh, A. N., & Lam, K. S. (2020). Discovery and mechanistic characterization of a structurally-unique membrane active peptide. Biochimica et Biophysica Acta. Biomembranes, 1862(10), 183394. https://doi.org/10.1016/j.bbamem.2020.183394
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berg, J. M., Tymoczko, J. L., Gatto, G. J., & Stryer, L. (2015). Biochemistry (8th ed.). W.H. Freeman & Company, a Macmillan Education Imprint. ISBN 978-1-4641-2610-9.
  • Botan, A., Favela-Rosales, F., Fuchs, P. F. J., Javanainen, M., Kanduč, M., Kulig, W., Lamberg, A., Loison, C., Lyubartsev, A., Miettinen, M. S., Monticelli, L., Määttä, J., Ollila, O. H. S., Retegan, M., Róg, T., Santuz, H., & Tynkkynen, J. (2015). Toward atomistic resolution structure of phosphatidylcholine headgroup and glycerol backbone at different ambient conditions. The Journal of Physical Chemistry. B, 119(49), 15075–15088. https://doi.org/10.1021/acs.jpcb.5b04878
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101.https://doi.org/10.1063/1.2408420
  • Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N· log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W. F., & Mark, A. E. (1999). Peptide folding: When simulation meets experiment. Angewandte Chemie International Edition, 38(1–2), 236–240. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2¡236::AID-ANIE236¿3.0.CO;2-M
  • Eiríksdóttir, E., Konate, K., Langel, Ü., Divita, G., & Deshayes, S. (2010). Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochimica et Biophysica Acta, 1798(6), 1119–1128. https://doi.org/10.1016/j.bbamem.2010.03.005
  • Fuzo, C. A., & Degrève, L. (2012). Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin. Journal of Molecular Modeling, 18(6), 2785–2794. https://doi.org/10.1007/s00894-011-1282-2
  • Grimsley, G. R., Scholtz, J. M., & Pace, C. N. (2009). A summary of the measured pK values of the ionizable groups in folded proteins. Protein Science : A Publication of the Protein Society, 18(1), 247–251. https://doi.org/10.1002/pro.19
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12¡1463::AID-JCC4¿3.0.CO;2-H
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Jämbeck, J. P. M., & Lyubartsev, A. P. (2012). Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. The Journal of Physical Chemistry. B, 116(10), 3164–3179. https://doi.org/10.1021/jp212503e
  • Jämbeck, J. P. M., & Lyubartsev, A. P. (2013). Another piece of the membrane puzzle: Extending slipids further. Journal of Chemical Theory and Computation, 9(1), 774–784. https://doi.org/10.1021/ct300777p
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211
  • Koren, E., & Torchilin, V. P. (2012). Cell-penetrating peptides: Breaking through to the other side. Trends in Molecular Medicine, 18(7), 385–393. https://doi.org/10.1016/j.molmed.2012.04.012
  • Lee, J., Patel, D. S., Ståhle, J., Park, S.-J., Kern, N. R., Kim, S., Lee, J., Cheng, X., Valvano, M. A., Holst, O., Knirel, Y. A., Qi, Y., Jo, S., Klauda, J. B., Widmalm, G., & Im, W. (2019). CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans. Journal of Chemical Theory and Computation, 15(1), 775–786. https://doi.org/10.1021/acs.jctc.8b01066
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. https://doi.org/10.1007/s008940100045
  • Lindahl, A., & van der Spoel, H. (2020). GROMACS 2020 Manual. https://doi.org/10.5281/zenodo.3562512
  • Lindgren, M., Rosenthal-Aizman, K., Saar, K., Eiríksdóttir, E., Jiang, Y., Sassian, M., Östlund, P., Hällbrink, M., & Langel, Ü. (2006). Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochemical Pharmacology, 71(4), 416–425. https://doi.org/10.1016/j.bcp.2005.10.048
  • Lindorff-Larsen, K., Piana, S., Dror, R. O., & Shaw, D. E. (2011). How fast-folding proteins fold. Science (New York, N.Y.), 334(6055), 517–520. https://doi.org/10.1126/science.1208351
  • Lingenheil, M., Denschlag, R., Reichold, R., & Tavan, P. (2008). The “Hot-Solvent/Cold-Solute” problem revisited. Journal of Chemical Theory and Computation, 4(8), 1293–1306. https://doi.org/10.1021/ct8000365
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Matthes, D., & de Groot, B. L. (2009). Secondary structure propensities in peptide folding simulations: A systematic comparison of molecular mechanics interaction schemes. Biophysical Journal, 97(2), 599–608. https://doi.org/10.1016/j.bpj.2009.04.061
  • McMahon, H. T., & Gallop, J. L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature, 438(7068), 590–596. https://doi.org/10.1038/nature04396
  • Melvin, R. L., Godwin, R. C., Xiao, J., Thompson, W. G., Berenhaut, K. S., & Salsbury, F. R. (2016). Uncovering large-scale conformational change in molecular dynamics without prior knowledge. Journal of Chemical Theory and Computation, 12(12), 6130–6146. https://doi.org/10.1021/acs.jctc.6b00757
  • Micsonai, A., Wien, F., Kernya, L., Lee, Y.-H., Goto, Y., Réfrégiers, M., & Kardos, J. (2015). Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 112(24), E3095–E3103. https://doi.org/10.1073/pnas.1500851112
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html.
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Seelig, J. (1977). Deuterium magnetic resonance: Theory and application to lipid membranes. Quarterly Reviews of Biophysics, 10(3), 353–418. https://doi.org/10.1017/S0033583500002948
  • Shai, Y. (2002). Mode of action of membrane active antimicrobial peptides. Biopolymers, 66(4), 236–248. https://doi.org/10.1002/bip.10260
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367 https://doi.org/10.1186/1756-0500-5-367
  • Torres-Sánchez, A., Vanegas, J. M., & Arroyo, M. (2016). Geometric derivation of the microscopic stress: A covariant central force decomposition. Journal of the Mechanics and Physics of Solids, 93, 224–239. https://doi.org/10.1016/j.jmps.2016.03.006
  • Vanegas, J. M., Longo, M. L., & Faller, R. (2011). Crystalline, ordered and disordered lipid membranes: Convergence of stress profiles due to ergosterol. Journal of the American Chemical Society, 133(11), 3720–3723. https://doi.org/10.1021/ja110327r
  • Vanegas, J. M., Torres-Sánchez, A., & Arroyo, M. (2014). Importance of force decomposition for local stress calculations in biomembrane molecular simulations. Journal of Chemical Theory and Computation, 10(2), 691–702. https://doi.org/10.1021/ct4008926
  • Vanegas, J. M., & Torres-Sanchez, A. (2015). GROMACS-LS: Computing the local stress tensor from MD simulations. Technical report.
  • Vermeer, L. S., de Groot, B. L., Réat, V., Milon, A., & Czaplicki, J. (2007). Acyl chain order parameter profiles in phospholipid bilayers: Computation from molecular dynamics simulations and comparison with 2H NMR experiments. European Biophysics Journal : EBJ, 36(8), 919–931. https://doi.org/10.1007/s00249-007-0192-9
  • Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Dávila-Contreras, E. M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R. M., Klauda, J. B., & Im, W. (2014). CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. Journal of Computational Chemistry, 35(27), 1997–2004. https://doi.org/10.1002/jcc.23702
  • Yeagle, P. L. (2016). Lipid dynamics in membranes. In The membranes of cells (pp. 155–188). Elsevier. https://doi.org/10.1016/B978-0-12-800047-2.00008-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.