467
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Venetoclax: a promising repurposed drug against SARS-CoV-2 main protease

, , ORCID Icon & ORCID Icon
Pages 12088-12099 | Received 03 Feb 2021, Accepted 09 Aug 2021, Published online: 23 Aug 2021

References

  • Vuong, W., Khan, M. B., Fischer, C., Arutyunova, E., Lamer, T., Shields, J., Saffran, H. A., McKay, R. T., van Belkum, M. J., Joyce, M. A., Young, H. S., Tyrrell, D. L., Vederas, J. C., & Lemieux, M. J. (2020). Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications, 11(1), 4282–4290. https://doi.org/10.1038/s41467-020-18096-2
  • Akaji, K., & Konno, H. (2020). Design and evaluation of anti-SARS-coronavirus agents based on molecular interactions with the viral protease. Molecules (Basel, Switzerland), 25(17), 3920-3939. https://doi.org/10.3390/molecules25173920
  • Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J., & Hilgenfeld, R. (2002). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. The EMBO Journal, 21(13), 3213–3224. https://doi.org/10.1093/emboj/cdf327
  • Banerjee, K., Padmavathi, G., Bhattacherjee, D., Saha, S., Kunnumakkara, A. B., & Bhabak, K. P. (2018). Potent anti-proliferative activities of organochalcogenocyanates towards breast cancer. Org Biomol Chem, 16(45), 8769–8782. https://doi.org/10.1039/c8ob01891j
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhabak, K. P., & Mugesh, G. (2007). Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chemistry–A European Journal, 13(16), 4594–4601. https://doi.org/10.1002/chem.200601584
  • Bhattacherjee, D., Basu, C., Bhardwaj, Q., Mal, S., Sahu, S., Sur, R., & Bhabak, K. P. (2017). Design, synthesis and anti-cancer activities of benzyl analogues of garlic-derived diallyl disulfide (DADS) and the corresponding diselenides. ChemistrySelect, 2(24), 7399–7406. https://doi.org/10.1002/slct.201700499
  • Bhattacherjee, D., Sufian, A., Mahato, S. K., Begum, S., Banerjee, K., De, S., Srivastava, H. K., & Bhabak, K. P. (2019). Trisulfides over disulfides: Highly selective synthetic strategies, anti-proliferative activities and sustained H2S release profiles. Chemical Communications (Cambridge, England), 55(90), 13534–13537. https://doi.org/10.1039/c9cc05562b
  • Bzówka, M., Mitusińska, K., Raczyńska, A., Samol, A., Tuszyński, J. A., & Góra, A. (2020). Structural and evolutionary analysis indicate that the Sars-COV-2 Mpro is a challenging target for small-molecule inhibitor design. International Journal of Molecular Sciences, 21(9), 3099-3116. https://doi.org/10.3390/ijms21093099
  • Cheng, B., & Li, T. (2020). Discovery of alliin as a putative inhibitor of the main protease of SARS-CoV-2 by molecular docking . Biotechniques, 69(2), 108–112. https://doi.org/10.2144/btn-2020-0038
  • Dai, W., Zhang, B., Jiang, X. M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. ). https://doi.org/10.1126/science.abb4489
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) Method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dassault Systèmes BIOVIA. (2016). Discovery studio modeling environment, Release 2017. Dassault Systèmes.
  • Ding, L., Zhang, X. X., Wei, P., Fan, K., & Lai, L. (2005). The interaction between severe acute respiratory syndrome coronavirus 3C-like proteinase and a dimeric inhibitor by capillary electrophoresis. Analytical Biochemistry, 343(1), 159–165. https://doi.org/10.1016/j.ab.2005.04.027
  • Favipiravir, protease inhibitors, oseltamivir -Gpo, hydroxychloroquine for treatment of COVID-19 - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04303299?cond=protease+inhibitors+covid-19&draw=2
  • Genheden, S., & Ryde, U. (2015, May 1). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghosh, A. K., Brindisi, M., Shahabi, D., Chapman, M. E., & Mesecar, A. D. (2020). Drug development and medicinal chemistry efforts toward SARS-coronavirus and Covid-19 therapeutics. Chemmedchem, 15(11), 907–932. https://doi.org/10.1002/cmdc.202000223
  • Goyal, B., & Goyal, D. (2020, June 8). Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Combinatorial Science, (6), 297–305. https://doi.org/10.1021/acscombsci.0c00058
  • Grum-Tokars, V., Ratia, K., Begaye, A., Baker, S. C., & Mesecar, A. D. (2008). Evaluating the 3C-like protease activity of SARS-coronavirus: Recommendations for standardized assays for drug discovery. Virus Research, 133(1), 63–73. https://doi.org/10.1016/j.virusres.2007.02.015
  • Guedes, I. A., Pereira, F. S. S., & Dardenne, L. E. (2018, September 24). Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges. Frontiers in Pharmacology, 9, 1089. https://doi.org/10.3389/fphar.2018.01089
  • Haug, E. J., Arora, J. S., & Matsui, K. (1976). A steepest-descent method for optimization of mechanical systems. Journal of Optimization Theory and Applications, 19(3), 401–424. https://doi.org/10.1007/BF00941484
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hsu, W. C., Chang, H. C., Chou, C. Y., Tsai, P. J., Lin, P. I., & Chang, G. G. (2005). Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease. Journal of Biological Chemistry, 280(24), 22741–22748. https://doi.org/10.1074/jbc.M502556200
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu, Y., Zhu, C., Hu, T., Du, X., Duan, Y., Yu, J., Yang, X., Yang, X., Yang, K., Liu, X., Guddat, L. W., Xiao, G., Zhang, L., Yang, H., & Rao, Z. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology, 27(6), 529–532. https://doi.org/10.1038/s41594-020-0440-6
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kumalo, H. M., Bhakat, S., & Soliman, M. E. S. (2015). Theory and applications of covalent docking in drug discovery: Merits and pitfalls. Molecules (Basel, Switzerland), 20(2), 1984–2000. February 1, pp. https://doi.org/10.3390/molecules20021984
  • Kumari, R., Kumar, R., & Lynn, A. G. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuo, C.-J., & Liang, P.-H. (2015). Characterization and inhibition of the main protease of severe acute respiratory syndrome coronavirus. ChemBioEng Reviews, 2(2), 118–132. https://doi.org/10.1002/cben.201400031
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. (2020). Early Transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
  • Li, Z., Li, X., Huang, Y. Y., Wu, Y., Liu, R., Zhou, L., Lin, Y., Wu, D., Zhang, L., Liu, H., Xu, X., Yu, K., Zhang, Y., Cui, J., Zhan, C. G., Wang, X., & Luo, H. B. (2020). Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proceedings of the National Academy of Sciences of the United States of America, 117(44), 27381–27387. https://doi.org/10.1073/pnas.2010470117
  • Lin, P. Y., Chou, C. Y., Chang, H. C., Hsu, W. C., & Chang, G. G. (2008). Correlation between dissociation and catalysis of SARS-CoV main protease. Archives of Biochemistry and Biophysics, 472(1), 34–42. https://doi.org/10.1016/j.abb.2008.01.023
  • Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., & Wang, M. (2020, December 1). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1), 16. https://doi.org/10.1038/s41421-020-0156-0
  • Mahato, S. K., Bhattacherjee, D., & Bhabak, K. P. (2020). The biothiol-triggered organotrisulfide-based self-immolative fluorogenic donors of hydrogen sulfide enable lysosomal trafficking. Chemical Communications (Cambridge, England), 56(56), 7769–7772. https://doi.org/10.1039/d0cc00613k
  • Menéndez, C. A., Byléhn, F., Perez-Lemus, G. R., Alvarado, W., & de Pablo, J. J. (2020). Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease. Science Advances, 6(37), eabd0345. https://doi.org/10.1126/sciadv.abd0345
  • Owen, C. D., Lukacik, P., Strain-Damerell, C. M., Douangamath, A., Powell, A. J., Fearon, D., Brandao-Neto, J., Crawshaw, A. D., Aragao, D., Williams, M., Flaig, R., Hall, D. R., McAuley, K. E., Mazzorana, M., Stuart, D. I., von Delft, F., & Walsh, M. A. (2020). SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19). https://www.rcsb.org/structure/6Y84
  • Penman, S. L., Kiy, R. T., Jensen, R. L., Beoku-Betts, C., Alfirevic, A., Back, D., Khoo, S. H., Owen, A., Pirmohamed, M., Park, B. K., Meng, X., Goldring, C. E., & Chadwick, A. E. (2020, October 1). Safety perspectives on presently considered drugs for the treatment of COVID-19. British Journal of Pharmacology, 4353–4374. https://doi.org/10.1111/bph.15204.
  • Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S. H. (2016, July 28). An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461
  • Richardson, P., Griffin, I., Tucker, C., Smith, D., Oechsle, O., Phelan, A., Rawling, M., Savory, E., & Stebbing, J. (2020). Baricitinib as potential treatment for 2019-NCoV acute respiratory disease. The Lancet, 395(10223), e30–e31. February 15, pp. https://doi.org/10.1016/S0140-6736(20)30304-4
  • Rouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., Nahar, L., Tiralongo, E., & Sarker, S. D. (2020, October 1). Antiviral potential of garlic (allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol, 104, 219–234. https://doi.org/10.1016/j.tifs.2020.08.006
  • Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Pawlik, B., Wang, X., Jochmans, D., Neyts, J., Młynarski, W., Hilgenfeld, R., & Drag, M. (2021). SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nature Chemical Biology, 17, 222–228. https://doi.org/10.1038/s41589-020-00689-z
  • Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J.-Y., Kim, D., Nguyen, T. T. H., Park, S.-J., Chang, J. S., Park, K. H., Rho, M.-C., & Lee, W. S. (2010). Biflavonoids from Torreya Nucifera Displaying SARS-CoV 3CL(pro) inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940–7947. https://doi.org/10.1016/j.bmc.2010.09.035
  • Scott, K. A., & Njardarson, J. T. (2018, February). Analysis of US FDA-approved drugs containing sulfur atoms. Topics in Current Chemistry (Cham), 376(1), 5. https://doi.org/10.1007/s41061-018-0184-5
  • Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., Montgomery, S. A., Hogg, A., Babusis, D., Clarke, M. O., Spahn, J. E., Bauer, L., Sellers, S., Porter, D., Feng, J. Y., Cihlar, T., Jordan, R., Denison, M. R., & Baric, R. S. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11(1), 222-236. https://doi.org/10.1038/s41467-019-13940-6
  • Singh, E., Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020, December 1). A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. Journal, Genetic Engineering & Biotechnology, 18(1), 69. https://doi.org/10.1186/s43141-020-00085-z
  • Thurakkal, L., Singh, S., Roy, R., Kar, P., Sadhukhan, S., & Porel, M. (2021). An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chemical Physics Letters, 763, 138193. https://doi.org/10.1016/j.cplett.2020.138193
  • Thuy, B. T. P., My, T. T. A., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Thi Phuong Loan, H., Triet, N. T., Anh, T. T., Van; Quy, P. T., Tat, P., Van; Hue, N., Van; Quang, D. T., Trung, N. T., Tung, V. T., Huynh, L. K., & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 5(14), 8312–8320. https://doi.org/10.1021/acsomega.0c00772
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (December 2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. pp. https://doi.org/10.1002/jcc.20291
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Vanommeslaeghe, K., Raman, E. P., & MacKerell, A. D. (2012). Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. Journal of Chemical Information and Modeling, 52(12), 3155–3168. https://doi.org/10.1021/ci3003649
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2017). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 87. https://doi.org/10.3389/fmolb.2017.00087
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, F., Chen, C., Tan, W., Yang, K., & Yang, H. (2016). Structure of main protease from human coronavirus NL63: Insights for wide spectrum anti-coronavirus drug design. Scientific Reports, 6, 22677-22680. https://doi.org/10.1038/srep22677.
  • Wei, P., Fan, K., Chen, H., Ma, L., Huang, C., Tan, L., Xi, D., Li, C., Liu, Y., Cao, A., & Lai, L. (2006). The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochemical and Biophysical Research Communications, 339(3), 865–872. https://doi.org/10.1016/j.bbrc.2005.11.102
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xu, T., Ooi, A., Lee, H. C., Wilmouth, R., Liu, D. X., & Lescar, J. (2005). Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer. Acta Crystallographica Section F, Structural Biology and Crystallization Communications, 61(Pt 11), 964–966. https://doi.org/10.1107/S1744309105033257
  • Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Kwok, Y. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., & Rao, Z. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biology, 3(10), e324. https://doi.org/10.1371/journal.pbio.0030324
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhang, X., Perez-Sanchez, H. C., & Lightstone, F. (2017). A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Current Topics in Medicinal Chemistry, 17(14), 1631–1639. https://doi.org/10.2174/1568026616666161117112604
  • Zhao, Q., Li, S., Xue, F., Zou, Y., Chen, C., Bartlam, M., & Rao, Z. (2008). Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. Journal of Virology, 82(17), 8647–8655. https://doi.org/10.1128/JVI.00298-08
  • Zhou, P., Yang, X., Lou; Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R., Di; Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., Zhao, K., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.