183
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Insights into the interaction of azinphos-methyl with bovine serum albumin: experimental and molecular docking studies

, , ORCID Icon, &
Pages 11863-11873 | Received 10 May 2021, Accepted 02 Aug 2021, Published online: 24 Aug 2021

References

  • Alam, M. A., Awal, M. A., Subhan, N., & Mostofa, M. (2009). In-vitro relationship between protein-binding and free drug concentrations of a water-soluble selective beta-adrenoreceptor antagonist (atenolol) and its interaction with arsenic. Journal of Health, Population, and Nutrition, 27(1), 20–30. https://doi.org/10.3329/jhpn.v27i1.3315
  • Alejo-González, K., Hanson-Viana, E., & Vazquez-Duhalt, R. (2018). Enzymatic detoxification of organophosphorus pesticides and related toxicants. Journal of Pesticide Science, 43(1), 1–9. https://doi.org/10.1584/JPESTICS.D17-078
  • Al-Mehizia, A. A., Bakheit, A. H., Zargar, S., Bhat, M. A., Asmari, M. M., & Wani, T. A. (2019). Evaluation of biophysical interaction between newly synthesized pyrazoline pyridazine derivative and bovine serum albumin by spectroscopic and molecular docking studies. Journal of Spectroscopy, 2019, 1–12. https://doi.org/10.1155/2019/
  • Alsaif, N. A., Al-Mehizia, A. A., Bakheit, A. H., Zargar, S., & Wani, T. A. (2020). A spectroscopic, thermodynamic and molecular docking study of the binding mechanism of dapoxetine with calf thymus DNA. South African Journal of Chemistry, 73, 44–50. https://doi.org/10.17159/0379-4350/2020/V73A7
  • Bagheri, M., & Fatemi, M. H. (2018). Fluorescence spectroscopy, molecular docking and molecular dynamic simulation studies of HSA-Aflatoxin B1 and G1 interactions. Journal of Luminescence, 202, 345–353. https://doi.org/10.1016/j.jlumin.2018.05.066
  • Berezin, M. Y., & Achilefu, S. (May 2010). Fluorescence lifetime measurements and biological imaging. Chemical Reviews, 110(5), 2641–2684. https://doi.org/10.1021/cr900343z
  • Bteich, M. (2019). An overview of albumin and alpha-1-acid glycoprotein main characteristics: Highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon, 5(11), e02879. https://doi.org/10.1016/j.heliyon.2019.e02879
  • Buddanavar, A. T., & Nandibewoor, S. T. (2017). Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine. Journal of Pharmaceutical Analysis, 7(3), 148–155. https://doi.org/10.1016/j.jpha.2016.10.001
  • Cacciatore, L., Guerrero, N., & Cochón, A. (2013). Cholinesterase and carboxylesterase inhibition in Planorbarius corneus exposed to binary mixtures of azinphos-methyl and chlorpyrifos. Aquatic Toxicology (Amsterdam, Netherlands), 128-129, 124–134. https://doi.org/10.1016/j.aquatox.2012.12.005
  • Calienni, M. N., Tuttolomondo, M. E., del Alonso, S. V., Montanari, J., & Alvira, F. C. (2020). Experimental and theoretical study of the structural features of Vismodegib molecule. Journal of Molecular Structure, 1205, 127581. https://doi.org/10.1016/j.molstruc.2019.127581
  • Chudzik, M., Maciążek-Jurczyk, M., Pawełczak, B., & Sułkowska, A. (2016). Spectroscopic studies on the molecular ageing of serum albumin. Molecules, 22(1), 34. https://doi.org/10.3390/molecules22010034
  • Colmenarejo, G., Alvarez-Pedraglio, A., & Lavandera, J. L. (2001). Cheminformatic models to predict binding affinities to human serum albumin. Journal of Medicinal Chemistry, 44(25), 4370–4378. https://doi.org/10.1021/jm010960b
  • Colović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. https://doi.org/10.2174/1570159x11311030006
  • Cui, F., Wang, J., Cui, Y., Li, J., Lu, Y., Fan, J., & Yao, X. (2007). Binding of human serum albumin to N-(p-ethoxy-phenyl)-N'-(1-naphthyl)thiourea and synchronous fluorescence determination of human serum albumin. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry, 23(6), 719–725. https://doi.org/10.2116/analsci.23.719
  • Dahiya, V., Anand, B. G., Kar, K., & Pal, S. (2020). In vitro interaction of organophosphate metabolites with bovine serum albumin: A comparative 1H NMR, fluorescence and molecular docking analysis. Pesticide Biochemistry and Physiology, 163, 39–50. https://doi.org/10.1016/j.pestbp.2019.10.004
  • Dezhampanah, H., & Firouzi, R. (2017). An investigation on intermolecular interaction between bis(Indolyl)methane and HSA and BSA using multi technique methods. Journal of Biomolecular Structure & Dynamics, 35(16), 3615–3626. https://doi.org/10.1080/07391102.2016.1264890
  • Dezhampanah, H., Firouzi, R., & Hasani, L. (2017). Intermolecular interaction of nickel (ii) phthalocyanine tetrasulfonic acid tetrasodium salt with bovine serum albumin: A multi-technique study. Nucleosides, Nucleotides & Nucleic Acids, 36(2), 122–138. https://doi.org/10.1080/15257770.2016.1226338
  • Dubeau, S., Bourassa, P., Thomas, T. J., & Tajmir-Riahi, H. A. (2010). Biogenic and synthetic polyamines bind bovine serum albumin. Biomacromolecules, 11(6), 1507–1515. https://doi.org/10.1021/bm100144v
  • Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Computational and Mathematical Methods in Medicine, 2018, 3502514. doi:10.1155/2018/
  • Hadichegeni, S., Goliaei, B., Taghizadeh, M., Davoodmanesh, S., Taghavi, F., & Hashemi, M. (2018). Characterization of the interaction between human serum albumin and diazinon via spectroscopic and molecular docking methods. Human & Experimental Toxicology, 37(9), 959–971. https://doi.org/10.1177/0960327117741752
  • He, C., Liu, X., Jiang, Z., Geng, S., Ma, H., & Liu, B. (2019). Interaction mechanism of flavonoids and α-glucosidase: Experimental and molecular modelling studies. Foods, 8(9), 355. https://doi.org/10.3390/foods8090355
  • Heydari, A., & Mansouri-Torshizi, H. (2016). Design, synthesis, characterization, cytotoxicity, molecular docking and analysis of binding interactions of novel acetylacetonatopalladium(II) alanine and valine complexes with CT-DNA and BSA. RSC Advances, 6(98), 96121–96137. https://doi.org/10.1039/C6RA18803F
  • Hu, Y.-J., Liu, Y., Wang, J.-B., Xiao, X.-H., & Qu, S.-S. (2004). Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 36(4), 915–919. https://doi.org/10.1016/j.jpba.2004.08.021
  • Inoue, A., Okino, T., Koyama, S., & Hirose, Y. (2020). Modeling and analysis of capacitive relaxation quenching in a single photon avalanche diode (SPAD) applied to a CMOS image sensor. Sensors, 20(10), 3007. https://doi.org/10.3390/s20103007
  • Karanth, S. (2014). Azinphos-methyl. In Philip Wexler (Ed.), Encyclopedia of toxicology (3rd ed., pp. 351–352). Elsevier.
  • Lee, P., & Wu, X. (2015). Review: Modifications of human serum albumin and their binding effect. Current Pharmaceutical Design, 21(14), 1862–1865. https://doi.org/10.2174/1381612821666150302115025
  • Lushchak, V. I., Matviishyn, T. M., Husak, V. V., Storey, J. M., & Storey, K. B. (2018). Pesticide toxicity: A mechanistic approach. EXCLI Journal, 17, 1101–1136. https://doi.org/10.17179/excli2018-1710
  • Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M., & Minor, W. (2012). Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology, 52(3-4), 174–182. https://doi.org/10.1016/j.molimm.2012.05.011
  • Mamta, R. J. R., & Wani, K. A. (2019). Status of organochlorine and organophosphorus pesticides in wetlands and its impact on aquatic organisms. Environmental Claims Journal, 31(1), 44–78. https://doi.org/10.1080/10406026.2018.1519315
  • Martini, S., Bonechi, C., & Rossi, C. (2010). Interaction between vine pesticides and bovine serum albumin studied by nuclear spin relaxation data. Journal of Agricultural and Food Chemistry, 58(19), 10705–10709. https://doi.org/10.1021/jf102035a
  • Mathew, J., & Bhimji, S. S. (2018). Physiology, blood plasma. StatPearls Publishing.
  • Mátyus, L., Szöllosi, J., & Jenei, A. (2006). Steady-state fluorescence quenching applications for studying protein structure and dynamics. Journal of Photochemistry and Photobiology. Part B, Biology, 83(3), 223–236. https://doi.org/10.1016/j.jphotobiol.2005.12.017
  • Mudavath, R., Ushaiah, B., Kishan Prasad, C., Sudeepa, K., Ravindar, P., Sunitha, S. N. T., & Sarala Devi, C. (2020). Molecular docking, QSAR properties and DNA/BSA binding, anti-proliferative studies of 6-methoxy benzothiozole imine base and its metal complexes. Journal of Biomolecular Structure & Dynamics, 38(10), 2849–2864. https://doi.org/10.1080/07391102.2019.1647878
  • Rabbani, G., & Ahn, S. N. (2019). Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. International Journal of Biological Macromolecules, 123, 979–990. https://doi.org/10.1016/j.ijbiomac.2018.11.053
  • Rabbani, G., Ahmad, E., Zaidi, N., & Khan, R. H. (2011). pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochemistry and Biophysics, 61(3), 551–560. https://doi.org/10.1007/s12013-011-9237-x
  • Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., & Khan, R. H. (2012). pH-induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochemistry and Biophysics, 62(3), 487–499. https://doi.org/10.1007/s12013-011-9335-9
  • Rabbani, G., Baig, M. H., Jan, A. T., Ju Lee, E., Khan, M. V., Zaman, M., Farouk, A.-E., Khan, R. H., & Choi, I. (2017). Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International Journal of Biological Macromolecules, 105(Pt 3), 1572–1580. https://doi.org/10.1016/j.ijbiomac.2017.04.051
  • Rabbani, G., Baig, M. H., Lee, E. J., Cho, W. K., Ma, J. Y., & Choi, I. (2017). Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analyses. Molecular Pharmacology, 14(5), 1656–1665. https://doi.org/10.1021/acs.molpharmaceut.6b01124
  • Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics, 15(4), 1445–1456. https://doi.org/10.1021/acs.molpharmaceut.7b00976
  • Shahabadi, N., Hadidi, S., & Feizi, F. (2015). Study on the interaction of antiviral drug ‘Tenofovir’ with human serum albumin by spectral and molecular modeling methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 169–175. https://doi.org/10.1016/j.saa.2014.10.070
  • Staničová, J., Verebová, V., & Beneš, J. (2018). Interaction of a potential anticancer agent hypericin and its model compound emodin with DNA and bovine serum albumin. In Vivo (Athens, Greece), 32(5), 1063–1070. https://doi.org/10.21873/invivo.11347
  • Storm, J. E. (2001). Organophosphorus compounds. In Patty’s toxicology. John Wiley & Sons, Inc.
  • Sun, Y., Su, B., Xu, Q., & Liu, R. (2012). Insights into the binding of 2-aminobenzothiazole with human serum albumin (HSA): Spectroscopic investigation and molecular modeling studies. Applied Spectroscopy, 66(7), 791–797. https://doi.org/10.1366/11-06524
  • Tan, M., Liang, W., Luo, X., & Gu, Y. (2013). Fluorescence spectroscopy study on the interaction between evodiamine and bovine serum albumin. Journal of Chemistry, 2013, 1–6. https://doi.org/10.1155/2013/308054
  • Varlan, A., & Hillebrand, M. (2010). Bovine and human serum albumin interactions with 3-carboxyphenoxathiin studied by fluorescence and circular dichroism spectroscopy. Molecules (Basel, Switzerland), 15(6), 3905–3919. https://doi.org/10.3390/molecules15063905
  • Wang, S., Liu, S., Zhang, Y., He, J., Coy, D. H., & Sun, L. (2020). Human serum albumin (HSA) and its applications as a drug delivery vehicle abstract. Health Science Journal, 14(2), 1–8. https://doi.org/10.36648/1791-809X.14.2.698
  • Wani, T. A., Alsaif, N., Alanazi, M. M., Bakheit, A. H., Zargar, S., & Bhat, M. A. (2021). A potential anticancer dihydropyrimidine derivative and its protein binding mechanism by multispectroscopic, molecular docking and molecular dynamic simulation along with its in-silico toxicity and metabolic profile. European Journal of Pharmaceutical Sciences, 158, 105686. https://doi.org/10.1016/j.ejps.2020.105686
  • Wani, T. A., Bakheit, A. H., Al-Majed, A. A., Altwaijry, N., Baquaysh, A., Aljuraisy, A., & Zargar, S. (2021). Binding and drug displacement study of colchicine and bovine serum albumin in presence of azithromycin using multispectroscopic techniques and molecular dynamic simulation. Journal of Molecular Liquids, 333, 115934. https://doi.org/10.1016/j.molliq.2021.115934
  • Wani, T. A., Bakheit, A. H., Al-Majed, A. R. A., Bhat, M. A., & Zargar, S. (2017). Study of the interactions of bovine serum albumin with the new anti-inflammatory agent 4-(1,3-dsioxo-1,3-dihydro-2H-isoindol-2-yl)-N-[(4-ethoxy-phenyl) methylidene]benzohydrazide using a multi-spectroscopic approach and molecular docking. Molecules, 22(8), 1258. https://doi.org/10.3390/molecules22081258
  • Wani, T. A., Bakheit, A. H., Zargar, S., Rizwana, H., & Al-Majed, A. A. (2020). Evaluation of competitive binding interaction of neratinib and tamoxifen to serum albumin in multidrug therapy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227, 117691. https://doi.org/10.1016/j.saa.2019.117691
  • Xu, Z., Liu, Y., Zhou, S., Fu, Y., & Li, C. (2016). Analysis of the interaction of Dp44mT with human serum albumin and calf thymus DNA using molecular docking and spectroscopic techniques. International Journal of Molecular Sciences., 17(7), 1042. https://doi.org/10.3390/ijms17071042
  • Yue, Q., Shen, T., Wang, C., Gao, C., & Liu, J. (2012). Study on the interaction of bovine serum albumin with ceftriaxone and the inhibition effect of zinc (II). International Journal of Spectroscopy, 2012, 1–9. https://doi.org/10.1155/2012/284173
  • Zhang, H. M., Fei, Z. H., Tang, B. P., Chen, J., Tao, W. H., & Wang, Y. Q. (2012). The interaction of blood proteins with brucine. Molecular Biology Reports, 39(4), 4937–4947. https://doi.org/10.1007/s11033-011-1289-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.