129
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Heat-induced transitions of an empty minute virus of mice capsid in explicit water: all-atom MD simulation

ORCID Icon & ORCID Icon
Pages 11900-11913 | Received 06 May 2021, Accepted 04 Aug 2021, Published online: 30 Aug 2021

References

  • Andoh, Y., Yoshii, N., Yamada, A., Fujimoto, K., Kojima, Mizutani, H. K., Nakagawa, A., Nomoto, A., & Okazaki, S. (2014). All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution. The Journal of Chemical Physics, 141(16), 165101. [Database] https://doi.org/10.1063/1.4897557
  • Ansardi, D. C., Porter, D. C., Anderson, M. J., & Morrow, C. D. (1996). Poliovirus assembly and encapsidation of genomic RNA. Advances in Virus Research, 46, 1–68.
  • Basinski, Z. S., Duesbery, M. S., & Taylor, R. (1971). Influence of shear stress on screw dislocations in a model sodium lattice. Canadian Journal of Physics, 49(16), 2160–2180. [Database] https://doi.org/10.1139/p71-262
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bothner, B., Schneemann, A., Marshall, D., Reddy, V., John-Son, J. E., & Siuzdak, G. (1999). Crystallographically identical virus capsids display different properties in solution. Nature Structural Biology, 6(2), 114–116. https://doi.org/10.1038/5799
  • Bottcher, B., Vogel, M., Ploss, M., & Nassal, M. (2006). High plasticity of the hepatitis B virus capsid revealed by conformational stress. Journal of Molecular Biology, 356(3), 812–822. https://doi.org/10.1016/j.jmb.2005.11.053
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Carrasco, C., Castellanos, M., de Pablo, P. J., & Mateu, M. G. (2008). Manipulation of the mechanical properties of a virus by protein engineering. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4150–4155. https://doi.org/10.1073/pnas.0708017105
  • Carreira, A., Menendez, M., Reguera, J., Almendral, J. M., & Mateu, G. (2004). In vitro disassembly of a parvovirus capsid and effect on capsid stability of heterologous peptide insertions in surface loops. The Journal of Biological Chemistry, 279(8), 6517–6525. https://doi.org/10.1074/jbc.M307662200
  • Carrillo-Tripp, M., Shepherd, C., Borelli, I. A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J. E., Brooks, C. L. I., & Reddy, V. (2009). VIPERdb2: An enhanced and web API enabled relational database for structural virology. Nucleic Acids Research, 37(Database issue), D436–D442. [Database] https://doi.org/10.1093/nar/gkn840
  • Castellanos, M., Perez, R., Carrasco, C., Hernando-Perez, M., Gomez-Herrero, J., de Pablo, P. J., & Mateu, M. G. (2012). Mechanical elasticity as a physical signature of conformational dynamics in a virus particle. Proceedings of the National Academy of Sciences of the United States of America, 109(30), 12028–12033. https://doi.org/10.1073/pnas.1207437109
  • Ceres, P., & Zlotnick, A. (2002). Weak protein − protein interactions are sufficient to drive assembly of Hepatitis B virus capsids. Biochemistry, 41(39), 11525–11531. https://doi.org/10.1021/bi0261645
  • Cotmore, S. F., & Tattersa, P. (2014). Parvoviruses: Small does not mean simple. Annual Review of Virology, 1(1), 517–537. https://doi.org/10.1146/annurev-virology-031413-085444
  • Crick, F. H. C., & Watson, J. D. (1956). Structure of small viruses. Nature, 177(4506), 473–475. https://doi.org/10.1038/177473a0
  • Curry, S., Fry, E., Blakemore, W., Abu-Ghazaleh, R., Jackson, T., King, A., Lea, S., Newman, J., & Stuart, D. (1997). Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: The structure of empty capsids of foot-and-mouth disease virus. Journal of Virology, 71(12), 9743–9752. https://doi.org/10.1128/JVI.71.12.9743-9752.1997
  • Douglas, T., & Young, M. (1999). Virus particles as templates for materials synthesis. Advanced Materials, 11(8), 679–681. https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<679::AID-ADMA679>3.0.CO;2-J
  • Douglas, T., & Young, M. (2006). Viruses: Making friends with old foes. Science (New York, N.Y.), 312(5775), 873–875. https://doi.org/10.1126/science.1123223
  • Draper, D. (2004). A guide to ions and RNA structure. RNA (New York, N.Y.), 10(3), 335–343. https://doi.org/10.1261/rna.5205404
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Evilevitch, A., Lavelle, L., Knobler, C. M., Raspaud, E., & Gelbart, W. M. (2003). Osmotic pressure inhibition of DNA ejection from phage. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9292–9295. https://doi.org/10.1073/pnas.1233721100
  • Fenley, A. T., Muddana, H. S., & Gilson, M. K. (2014). Calculation and visualization of atomistic mechanical stresses in nanomaterials and biomolecules. PLoS One, 9(12), e113119. The software used to calculate the atomistic stress can be found in GitHub repository: http://github.com/afenley/CAMS https://doi.org/10.1371/journal.pone.0113119
  • Grime, J. M. A., Dama, J. F., Ganser-Pornillos, B. K., Wood-Ward, C. L., Jensen, G. J., Yeager, M. M., & Voth, G. A. (2016). Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nature Communications, 7, 11568. https://doi.org/10.1038/ncomms11568
  • Gupta, M., Chakravarty, C., & Bandyopadhyay, S. (2016). Sensitivity of protein glass transition to the choice of water model. Journal of Chemical Theory and Computation, 12(11), 5643–5655. https://doi.org/10.1021/acs.jctc.6b00825
  • Hagan, M. F. (2014). Modeling viral capsid assembly. Advances in Chemical Physics, 155, 1–68. https://doi.org/10.1002/9781118755815.ch01
  • Hagan, M. F., & Chandler, D. (2006). Dynamic pathways for viral capsid assembly. Biophysics Journal, 91(1), 42–54. [Database] https://doi.org/10.1529/biophysj.105.076851
  • Harvey, S. C., Tan, R. K. Z., & Cheatham, T. E. (1998). The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition. Journal of Computational Chemistry, 19(7), 726–740. https://doi.org/10.1002/(SICI)1096-987X(199805)19:7<726::AID-JCC4>3.0.CO;2-S
  • Hatch, H. W., & Debenedetti, P. G. (2012). Molecular modeling of mechanical stresses on proteins in glassy matrices: Formalism. The Journal of Chemical Physics, 137(3), 035103. https://doi.org/10.1063/1.4734007
  • Hernando, E., Llamas-Saiz, A. L., Foces-Foces, C., McKenna, R., Portman, I., Agbandje-McKenna, M., & Almendral, J. M. (2000). Biochemical and physical characterization of parvovirus minute virus of mice virus-like particles. Virology, 267(2), 299–309. https://doi.org/10.1006/viro.1999.0123
  • Hernando-Perez, M., Lambert, S., Nakatani-Webster, E., Catalano, C. E., & de Pablo, P. J. (2014). Cementing proteins provide extra mechanical stabilization to viral cages. Nature Communications, 5, 4520.
  • Hess, B., Bekker, H., Berendsen, H. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Physics, 18, 1463–1472.
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hirneisen, K. A., Black, E. P., Cascarino, J. L., Fino, V. R., Hoover, D. G., & Kniel, K. E. (2010). Viral inactivation in foods: A review of traditional and novel food-processing technologies. Comprehensive Reviews in Food Science and Food Safety, 9(1), 3–20. https://doi.org/10.1111/j.1541-4337.2009.00092.x
  • Ivanovska, I. L., Miranda, R., Carrascosa, J. L., Wuite, G. J. L., & Schmidt, C. F. (2011). Discrete fracture patterns of virus shells reveal mechanical building blocks. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12611–12616. https://doi.org/10.1073/pnas.1105586108
  • Jiang, J., Yang, J., Sereda, Y. V., & Ortoleva, P. J. (2015). Early stage P22 viral capsid self-assembly mediated by scaffolding protein: Atom-resolved model and molecular dynamics simulation. The Journal of Physical Chemistry. B, 119(16), 5156–5162. https://doi.org/10.1021/acs.jpcb.5b00303
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kasuya, H., Takeda, S., Nomoto, S., & Nakao, A. (2005). The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene Therapy, 12(9), 725–736. https://doi.org/10.1038/sj.cgt.7700830
  • Kegel, W. K., & van der Schoot, P. (2004). Competing hydrophobic and screened-coulomb interactions in hepatitis B virus capsid assembly. Biophysical Journal, 86(6), 3905–3913. https://doi.org/10.1529/biophysj.104.040055
  • Klug, W. S., Bruinsma, R. F., Michel, J.-P., Knobler, C. M., Ivanovska, I. L., Schmidt, C. F., & Wuite, G. J. L. (2006). Failure of viral shells. Physical Review Letters, 97(22), 228101. https://doi.org/10.1103/PhysRevLett.97.228101
  • Kol, N., Gladniko, M., Barlam, R. Z., Shneck, D., Rein, A., & Rousso, I. (2006). Mechanical properties of murine leukemia virus particles: Effect of maturation. Biophysical Journal, 91(2), 767–774. https://doi.org/10.1529/biophysj.105.079657
  • Kontou, M., Govindasamy, L., Nam, H.-J., Bryant, N., Llamas-Saiz, A. L., Foces-Foces, C., Hernando, E., Rubio, M.-P., McKenna, R., Almendral, J. M., & Agbandje-McKenna, M. (2005). Structural determinants of tissue tropism and in vivo pathogenicity for the parvovirus minute virus of mice. Journal of Virology, 79(17), 10931–10943. https://doi.org/10.1128/JVI.79.17.10931-10943.2005
  • Koutsky, L. A., Ault, K. A., Wheeler, C. M., Brown, D. R., Barr, E., Alvarez, F. B., Chiacchierini, L. M., & Jansen, K. U. (2002). A controlled trial of a human papillomavirus type 16 vaccine. New England Journal of Medicine, 347(21), 1645–1651. https://doi.org/10.1056/NEJMoa020586
  • Kumar, P., Yan, Z., Xu, L., Mazza, M. G., Buldyrev, S. V., Chen, S. H., Sastry, S., & Stanley, H. E. (2006). Glass transition in biomolecules and the liquid-liquid critical point of water. Physical Review Letters, 97(17), 177802. https://doi.org/10.1103/PhysRevLett.97.177802
  • Lanman, J., Lam, T. T., Emmett, M. R., Marshall, A. G., Sakalian, M., & Prevelige, P. E. (2004). Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nature Structural & Molecular Biology, 11(7), 676–677. [Database] https://doi.org/10.1038/nsmb790
  • Larsson, D. S. D., Liljas, D., & van der Spoel, D. (2012). Virus capsid dissolution studied by microsecond molecular dynamics simulations. PLoS Computational Biology, 8(5), e1002502. https://doi.org/10.1371/journal.pcbi.1002502
  • Lewis, J. K., Bothner, B., Smith, T. J., & Siuzdak, G. (1998). Antiviral agent blocks breathing of the common cold virus. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6774–6778. https://doi.org/10.1073/pnas.95.12.6774
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Liu, Z., Huang, J., Tyagi, M., Neill, H. O., Zhang, Q., Mamontov, E., Jain, N., Wang, Y., Zhang, J., Smith, J. C., & Hong, L. (2017). Dynamical transition of collective motions in dry proteins. Physical Review Letters, 119(4), 048101. https://doi.org/10.1103/PhysRevLett.119.048101
  • Los, M., Czyz, A., Sell, E., Wegrzyn, A., & Neubauer, P. (2004). Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? Journal of Applied Genetics, 45, 111–120.
  • Lowy, D. R., & Schiller, J. T. (1999). Papillomaviruses: Prophylactic vaccine prospects. Biochimica et Biophysica Acta, 1423(1), M1–M8. https://doi.org/10.1016/s0304-419x(98)00037-7
  • Medrano, M., Valbuena, A., Rodríguez-Huete, A., & Mateu, M. G. (2019). Structural determinants of mechanical resistance against breakage of a virus-based protein nanoparticle at a resolution of single amino acids. Nanoscale, 11(19), 9369–9383. https://doi.org/10.1039/C9NR01935A
  • Michel, J. P., Ivanovska, I. L., Gibbons, M. M., Klug, W. S., Knobler, C. M., Wuite, G. J. L., & Schmidt, C. F. (2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6184–6189. https://doi.org/10.1073/pnas.0601744103
  • Monroe, E. B., Kang, S., Kyere, S. K., Li, R., & Prevelige, P. E. (2010). Hydrogen/deuterium exchange analysis of HIV-1 capsid assembly and maturation. Structure (London, England: 1993), 18(11), 1483–1491. https://doi.org/10.1016/j.str.2010.08.016
  • Muller-Merbach, M., Neve, H., & Hinrichs, J. (2005). Kinetics of the thermal inactivation of the Lactococcus lactis bacteriophage P008. Journal of Dairy Research, 72(3), 281–286. https://doi.org/10.1017/S0022029905000725
  • Nguyen, H. D., Reddy, V. S., & Brooks, C. L. III. (2007). Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. Nano Letters, 7(2), 338–344. https://doi.org/10.1021/nl062449h
  • Pathak, A. K., & Bandyopadhyay, T. (2017). Water isotope effect on the thermostability of a polio viral RNA hairpin: A metadynamics study. The Journal of Chemical Physics, 146(16), 165104. https://doi.org/10.1063/1.4982049
  • Pathak, A. K., & Bandyopadhyay, T. (2019). Temperature induced dynamical transition of biomolecules in polarizable and nonpolarizable TIP3P water. Journal of Chemical Theory and Computation, 15(4), 2706–2718. https://doi.org/10.1021/acs.jctc.9b00005
  • Patterson, D. P., Schwarz, B., El-Boubbou, K., van der Oost, J., Prevelige, P. E., & Douglas, T. (2012). Virus-like particle nanoreactors: Programmed encapsulation of the thermostable CelB glycosidase inside the P22 capsid. Soft Matter, 8(39), 10158–10166. https://doi.org/10.1039/c2sm26485d
  • Patterson, D. P., Schwarz, B., Waters, R. S., Gedeon, T., & Douglas, T. (2014). Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chemical Biology, 9(2), 359–365. https://doi.org/10.1021/cb4006529
  • Perilla, J. R., Hadden, J. A., Goh, B. C., Mayne, C. G., & Schulten, K. (2016). All-atom molecular dynamics of virus capsids as drug targets. The Journal of Physical Chemistry Letters, 7(10), 1836–1844. https://doi.org/10.1021/acs.jpclett.6b00517
  • Perilla, J. R., & Schulten, K. (2017). Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nature Communications, 8, 15959. https://doi.org/10.1038/ncomms15959
  • Poian, A. T. D., Johnson, J. E., & Silva, J. L. (2002). Protein-RNA interactions and virus stability as probed by the dynamics of tryptophan side chains. Journal of Biological Chemistry, 277(49), 47596–47602. https://doi.org/10.1074/jbc.M209174200
  • Porta, C., Kotecha, A., Burman, A., Jackson, T., Ren, J., Loureiro, S., Jones, I. M., Fry, E. E., Stuart, D. I., & Charleston, B. (2013). Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathogens, 9(3), e1003255. https://doi.org/10.1371/journal.ppat.1003255
  • Qiu, X. (2012). Heat induced capsid disassembly and DNA release of bacteriophage λ. PLoS One, 7(7), e39793. https://doi.org/10.1371/journal.pone.0039793
  • Richards, F. M. (1977). Areas, volumes, packing, and protein structure. Annual Review of Biophysics and Bioengineering, 6(1), 151–176. https://doi.org/10.1146/annurev.bb.06.060177.001055
  • Rincón, V., Rodríguez-Huete, A., López-Argüello, S., Ibarra-Molero, B., Sanchez-Ruiz, J. M., Harmsen, M. M., & Mateu, M. G. (2014). Identification of the structural basis of thermal lability of a virus provides a rationale for improved vaccines. Structure (London, England: 1993), 22(11), 1560–1570. https://doi.org/10.1016/j.str.2014.08.019
  • Roizman, B., Mayer, M. M., & Rapp, H. J. (1958). Immunochemical studies of poliovirus. III. Further studies on the immunologic and physical properties of poliovirus particles produced in tissue culture. Journal of Immunology (Baltimore, Md.: 1950), 81(5), 419–425.
  • Rome, L. H., & Kickhoefer, V. A. (2013). Development of the vault particle as a platform technology. ACS Nano, 7(2), 889–902. https://doi.org/10.1021/nn3052082
  • Ross, C. J., Atilgan, A. R., Tastan, B. O., & Atilgan, C. (2018). Unraveling the motions behind enterovirus 71 uncoating. Biophysical Journal, 114(4), 822–838. https://doi.org/10.1016/j.bpj.2017.12.021
  • Ryckaert, J.-P., Ciccotti, H. J., & Berendsen, G. (1977). Numerical integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. Journal of Computational Physics, 18, 327–341.
  • Servid, A., Jordan, P., O'Neil, A., Prevelige, P., & Douglas, T. (2013). Location of the bacteriophage P22 coat protein C-terminus provides opportunities for the design of capsid-based materials. Biomacromolecules, 14(9), 2989–2995. https://doi.org/10.1021/bm400796c
  • Singh, P., Destito, G., Schneemann, A., & Manchester, M. J. (2006). Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. Journal of Nanobiotechnology, 4(1), 2. https://doi.org/10.1186/1477-3155-4-2
  • Smith, D. E., Tans, S. J., Smith, S. B., Grimes, S., Anderson, D. L., & Bustamante, C. (2001). The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature, 413(6857), 748–752. [Database] https://doi.org/10.1038/35099581
  • Speir, J. A., Bothner, B., Qu, C., Willits, D. A., Young, M. J., & Johnson, J. E. (2006). Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics. Journal of Virology, 80(7), 3582–3591. https://doi.org/10.1128/JVI.80.7.3582-3591.2006
  • Tresse, G., Chen, J., Chevreui, M., Nhiri, N., Jacquet, E., & Lansac, Y. (2017). Two-dimensional phase transition of viral capsid gives insights into subunit interactions. Physical Review Applied, 7(1), 014005. https://doi.org/10.1103/PhysRevApplied.7.014005
  • van de Waterbeemd, M., Llauró, A., Snijder, J., Valbuena, A., Rodríguez-Huete, A., Fuertes, M. A., de Pablo, P. J., Mateu, M. G., & Heck, A. J. R. (2017). Structural analysis of a temperature-induced transition in a viral capsid probed by HDX-MS. Biophysical Journal, 112(6), 1157–1165. https://doi.org/10.1016/j.bpj.2017.02.003
  • Verduin, B. J., Prescott, B., & Thomas, G. J. Jr. (1984). RNA-protein interactions and secondary structures of cowpea chlorotic mottle virus for in vitro assembly. Biochemistry, 23(19), 4301–4308. https://doi.org/10.1021/bi00314a008
  • Vörös, Z., Csík, G., Herényi, L., &Kellermayera, M. (2018). Journal of Virology, 92, e01236-18.
  • Voss, N. R., & Gerstein, M. (2010). 3V: Cavity, channel and cleft volume calculator and extractor. Nucleic Acids Research, 38(Web Server), W555–W562. [Database] https://doi.org/10.1093/nar/gkq395
  • Voss, N. R., Gerstein, M., Steitz, T. A., & Moore, P. B. P. B. (2006). The geometry of the ribosomal polypeptide exit tunnel. Journal of Molecular Biology, 360(4), 893–906. https://doi.org/10.1016/j.jmb.2006.05.023
  • Wang, L., & Smith, D. L. (2005). Capsid structure and dynamics of a human rhinovirus probed by hydrogen exchange mass spectrometry. Protein Science: A Publication of the Protein Society, 14(6), 1661–1672. [Database] https://doi.org/10.1110/ps.051390405
  • Yoon, J., Lin, J.-C., Hyeon, C., & Thirumalai, D. (2014). Dynamical transition and heterogeneous hydration dynamics in RNA. The Journal of Physical Chemistry B, 118(28), 7910–7919. https://doi.org/10.1021/jp500643u
  • Zimmerman, J. A., Webb, E. B., Hoyt, J. J., Jones, R. E., Klein, P. A., & Bammann, D. J. (2004). Calculation of stress in atomistic simulation. Modelling and Simulation in Materials Science and Engineering, 12(4), S319–S332. https://doi.org/10.1088/0965-0393/12/4/S03
  • Zink, M., & Grubmuller, H. (2009). Mechanical properties of the icosahedral shell of southern bean mosaic virus: A molecular dynamics study. Biophysical Journal, 96(4), 1350–1363. https://doi.org/10.1016/j.bpj.2008.11.028
  • Zink, M., & Grubmuller, H. (2010). Primary changes of the mechanical properties of Southern Bean Mosaic Virus upon calcium removal. Biophysical Journal, 98(4), 687–695. https://doi.org/10.1016/j.bpj.2009.10.047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.