4,735
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: in silico studies

ORCID Icon, , , ORCID Icon &
Pages 12248-12259 | Received 28 May 2021, Accepted 12 Aug 2021, Published online: 06 Sep 2021

References

  • American Physiological Society. (2019). FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. https://journals.physiology.org/doi/full/10.1152/physrev.00029.2018. https://doi.org/10.1152/physrev.00029.2018
  • Aqil, F., Munagala, R., Jeyabalan, J., & Vadhanam, M. V. (2013). Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Letters, 334(1), 133–141. https://doi.org/10.1016/j.canlet.2013.02.032
  • Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., & Vardiman, J. W. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127(20), 2391–2405. https://doi.org/10.1182/blood-2016-03-643544
  • Basilico, S., & Göttgens, B. (2017). Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia. Journal of Molecular Medicine (Berlin, Germany), 95(7), 719–727. https://doi.org/10.1007/s00109-017-1535-3
  • Berenstein, R. (2015). Class III receptor tyrosine kinases in acute leukemia - Biological functions and modern laboratory analysis. Biomarker Insights, 10(Suppl 3), 1–14. https://doi.org/10.4137/BMI.S22433
  • Birbrair, A., Frenette, P. S. (2016, 1 March). Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 1370 (1), 82–96. https://doi.org/10.1111/nyas.13016
  • Cancer.Net. (2020). Leukemia - Acute myeloid - AML: Statistics. https://www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/statistics.
  • Choudhary, M. I., Shaikh, M., Tul-Wahab, A., & Ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PloS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717 PMID: 28256516; PMCID: PMC5335600.
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19 PMID: 25618350.
  • Daver, N., Schlenk, R. F., Russell, N. H., & Levis, M. J. (2019). Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia, 33(2), 299–312. ‐https://doi.org/10.1038/s41375-018-0357-9
  • Diseases, N., Grewal, A. S., Bhardwaj, S., Pandita, D., Lather, V., & Singh Sekhon, B. (2015). Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Reviews in Medicinal Chemistry, 16(2), 120–162. https://doi.org/10.2174/1389557515666150909143737
  • Döhner, H., Weisdorf, D. J., & Bloomfield, C. D. (2015). Acute myeloid leukemia. The New England Journal of Medicine, 373(12), 1136–1152. https://doi.org/10.1056/NEJMra1406184
  • Elyamany, G., Awad, M., Fadalla, K., Albalawi, M., Al Shahrani, M., & Al Abdulaaly, A. (2014). Frequency and prognostic relevance of FLT3 mutations in Saudi acute myeloid leukemia patients. Advances in Hematology, 2014, 141360. https://doi.org/10.1155/2014/141360
  • Erukainure, O. L., Mopuri, R., Chukwuma, C. I., Koorbanally, N. A., & Islam, M. S. (2018). Phaseolus lunatus (lima beans) abates Fe2+‐induced hepatic redox imbalance; inhibits intestinal glucose absorption and major carbohydrate catabolic enzymes; and modulates muscle glucose uptake. Journal of Food Biochemistry, 42(6), 1–14. https://doi.org/10.1111/jfbc.12655
  • Fernandes, Í. A., Braga Resende, D., Ramalho, T. C., Kuca, K., & da Cunha, E. F. F. (2020). Theoretical studies aimed at finding FLT3 inhibitors and a promising compound and molecular pattern with dual aurora B/FLT3 activity. Molecules, 25(7), 1726. https://doi.org/10.3390/molecules25071726
  • Gao, N., Cheng, S., Budhraja, A., Gao, Z., Chen, J., Liu, E. H., Huang, C., Chen, D., Yang, Z., Liu, Q., Li, P., Shi, X., & Zhang, Z. (2012). Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway. British Journal of Pharmacology, 165(6), 1813–1826. https://doi.org/10.1111/j.1476-5381.2011.01684.x
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (January, 1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1 (1), 55–68. https://doi.org/10.1021/cc9800071
  • Gilliland, D. G., & Griffin, J. D. (2002). Role of FLT3 in leukemia. Current Opinion in Hematology, 9(4), 274–281. https://doi.org/10.1097/00062752-200207000-00003 PMID: 12042700.
  • Gokhale, P., Chauhan, A., Arora, A., Khandekar, N., Nayarisseri, A., & Singh, S. K. (2019). FLT3 inhibitor design using molecular docking based virtual screening for acute myeloid leukemia. Bioinformation, 15(2), 104–115. https://doi.org/10.6026/97320630015104
  • Grafone, T., Palmisano, M., Nicci, C., & Storti, S. (2012). An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncology Reviews, 6(1), e8. https://doi.org/10.4081/oncol.2012.e8 PMID: 25992210; PMCID: PMC4419636.
  • Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants (Basel), 9(10), 923. https://doi.org/10.3390/antiox9100923 PMID: 32993196; PMCID: PMC7601682.
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/c8md00472b
  • Guha, R. (2013). On exploring structure-activity relationships. Methods in Molecular Biology (Clifton, N.J.), 993, 81–94. https://doi.org/10.1007/978-1-62703-342-8_6.
  • Guimarães, A. P., Oliveira, A. A., da Cunha, E. F. F., Ramalho, T. C., & França, T. C. C. (2011). Design of new chemotherapeutics against the deadly anthrax disease. Docking and molecular dynamics studies of inhibitors containing pyrrolidine and riboamidrazone rings on nucleoside hydrolase from Bacillus anthracis. Journal of Biomolecular Structure & Dynamics, 28(4), 455–469. https://doi.org/10.1080/07391102.2011.10508588
  • Hanh, H., Tran, T., Nguyen, M. C., Le, H. T., Nguyen, T. L., & Pham, T. B. (2013). Inhibitors of a -glucosidase and a -amylase from Cyperus rotundus. Pharmaceutical Biology, 52(1), 74–77. https://doi.org/10.3109/13880209.2013.814692
  • Hayashi, H., Hattori, S., Inoue, K., Khodzhimatov, O., Ashurmetov, O., Ito, M., & Honda, G. (2003). Field survey of Glycyrrhiza plants in Central Asia (3). Chemical characterization of G. glabra collected in Uzbekistan. Chemical & Pharmaceutical Bulletin, 51(11), 1338–1340. https://doi.org/10.1248/cpb.51.1338
  • Huang, H.-L., Hsieh, M.-J., Chien, M.-H., Chen, H.-Y., Yang, S.-F., & Hsiao, P.-C. (2014). Glabridin mediate caspases activation and induces apoptosis through JNK1/2 and p38 MAPK pathway in human promyelocytic leukemia cells. PLoS One, 9(6), e98943. https://doi.org/10.1371/journal.pone.0098943
  • Jagannathan-Bogdan, M., & Zon, L. I. (2013). Hematopoiesis. Development (Cambridge, England), 140(12), 2463–2467. https://doi.org/10.1242/dev.083147
  • Jia, C.-Y., Li, J.-Y., Hao, G.-F., & Yang, G.-F. (2020). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258. https://doi.org/10.1016/j.drudis.2019.10.014
  • Kawase, T., Nakazawa, T., Eguchi, T., Tsuzuki, H., Ueno, Y., Amano, Y., Suzuki, T., Mori, M., & Yoshida, T. (2019). Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget, 10(58), 6111–6123. https://doi.org/10.18632/oncotarget.27222
  • Kiyoi, H., Kawashima, N., & Ishikawa, Y. (2020). FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Science, 111(2), 312–322. https://doi.org/10.1111/cas.14274
  • Kottaridis, P. D., Gale, R. E., & Linch, D. C. (2003). Flt3 mutations and leukaemia. British Journal of Haematology, 122(4), 523–538. https://doi.org/10.1046/j.1365-2141.2003.04500.x
  • Kuete, V., Mbaveng, A. T., Zeino, M., Fozing, C. D., Ngameni, B., Kapche, G. D., Ngadjui, B. T., & Efferth, T. (2015). Cytotoxicity of three naturally occurring flavonoid derived compounds (artocarpesin, cycloartocarpesin and isobavachalcone) towards multi-factorial drug-resistant cancer cells. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 22(12), 1096–1102. https://doi.org/10.1016/j.phymed.2015.07.006 PMID: 26547532.
  • Lee, K. T., Kim, J. I., Rho, Y. S., Chang, S. G., Jung, J. C., Park, J. H., Park, H. J., & Miyamoto, K. (1999). Hypericin induces both differentiation and apoptosis in human promyelocytic leukemia HL-60 cells. Biological & Pharmaceutical Bulletin, 22(12), 1271–1274. Dechttps://doi.org/10.1248/bpb.22.1271 PMID: 10746153.
  • Levis, M. (2013). FLT3 mutations in acute myeloid leukemia: What is the best approach in 2013? Hematology. American Society of Hematology. Education Program, 2013, 220–226.
  • Li, R. F., Feng, Y. Q., Chen, J. H., Ge, L. T., Xiao, S. Y., & Zuo, X. L. (2015). Naringenin suppresses K562 human leukemia cell proliferation and ameliorates adriamycin-induced oxidative damage in polymorphonuclear leukocytes. Experimental and Therapeutic Medicine, 9(3), 697–706. https://doi.org/10.3892/etm.2015.2185
  • Lin, Z., Jiang, J., & Liu, X. S. (2016). Ursolic acid-mediated apoptosis of K562 cells involves Stat5/Akt pathway inhibition through the induction of Gfi-1. Scientific Reports, 6, 33358. https://doi.org/10.1038/srep33358
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001, March). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46 (1-3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Masood, A.M., Ali, H.H., Naeem, M., Latif, M., Bukhari, A.H. and Tanveer, A. (2015). Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmacological activities. Journal of ethnopharmacology, 174, 540–560. https://doi.org/10.1016/j.jep.2015.08.012
  • Meillon-Garcia, L. A., & Demichelis-Gómez, R. (2020). Access to therapy for acute myeloid leukemia in the developing world: Barriers and solutions. Current Oncology Reports, 22(12), 125. https://doi.org/10.1007/s11912-020-00987-8
  • Miller, C. M., O'Sullivan, E. C., & McCarthy, F. O. (2019). Novel 11-substituted ellipticines as potent anticancer agents with divergent activity against cancer cells. Pharmaceuticals (Basel), 12(2), 90. https://doi.org/10.3390/ph12020090 PMID: 31207878; PMCID: PMC6631919.
  • Nakao, M., Yokota, S., Iwai, T., Kaneko, H., Horiike, S., Kashima, K., Sonoda, Y., Fujimoto, T., & Misawa, S. (1996). Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia, 10(12), 1911–1918.
  • Neidle, S. (2012). Design principles for quadruplex-binding small molecules. In Therapeutic applications of quadruplex nucleic acids (pp. 151–174). US: Academic Press:. https://doi.org/10.1016/b978-0-12-375138-6.00009-1
  • Nombela-Arrieta, C. G., & Manz, M. (2017). Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Adv, 1 (6), 407–416. https://doi.org/10.1182/bloodadvances.2016003194
  • Papaemmanuil, E., Gerstung, M., Bullinger, L., Gaidzik, V. I., Paschka, P., Roberts, N. D., Potter, N. E., Heuser, M., Thol, F., Bolli, N., Gundem, G., Van Loo, P., Martincorena, I., Ganly, P., Mudie, L., McLaren, S., O'Meara, S., Raine, K., Jones, D. R., … Campbell, P. J. (2016). Genomic classification and prognosis in acute myeloid leukemia. The New England Journal of Medicine, 374(23), 2209–2221. https://doi.org/10.1056/NEJMoa1516192
  • Perl, A. E. (2019). Availability of FLT3 inhibitors: How do we use them? Blood, 134 (9), 741–745. https://doi.org/10.1182/blood.2019876821
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015, May 14). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104 Epub 2015 Apr 22. PMID: 25860834; PMCID: PMC4434528.
  • Prasad, S. K., Pradeep, S., Shimavallu, C., Kollur, S. P., Syed, A., Marraiki, N., Egbuna, C., Gaman, M.-A., Kosakowska, O., Cho, W. C., Patrick-Iwuanyanwu, K. C., Ortega, C. J., Frau, J., Flores-Holguín, N., & Glossman-Mitnik, D. (2020). Evaluation of Annona muricata acetogenins as potential anti-SARS-CoV-2 agents through computational approaches. Frontiers in Chemistry, 8, 624716. https://doi.org/10.3389/fchem.2020.624716
  • Prasanth, D., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., & Guntupalli, C. (2020). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure & Dynamics, 39(13), 4618-4632. . Advance online publication. https://doi.org/10.1080/07391102.2020.1779129
  • Qasaymeh, R. M., Rotondo, D., Oosthuizen, C. B., Lall, N., & Seidel, V. (2019). Predictive binding affinity of plant-derived natural products towards the protein kinase G enzyme of Mycobacterium tuberculosis (MtPknG). Plants (Basel, Switzerland), 8(11), 477. https://doi.org/10.3390/plants8110477
  • Schneider, G. (2013). Prediction of drug-like properties. In: Madame Curie Bioscience Database [Internet]. Landes Bioscience. 2000–2013. https://www.ncbi.nlm.nih.gov/books/NBK6404/.
  • Simmler, C., Pauli, G. F., & Chen, S. N. (2013). Phytochemistry and biological properties of glabridin. Fitoterapia, 90, 160–184. https://doi.org/10.1016/j.fitote.2013.07.003
  • Small, D. (2006). FLT3 mutations: Biology and treatment. Hematology. American Society of Hematology. Education Program, 2006(1), 178–184. https://doi.org/10.1182/asheducation-2006.1.178
  • Stiborová, M., Bieler, C. A., Wiessler, M., & Frei, E. (2001). The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts⋆1. Biochemical Pharmacology, 62(12), 1675–1684. https://doi.org/10.1016/S0006-2952(01)00806-1
  • Sutamtewagul, G., & Vigil, C. E. (2018). Clinical use of FLT3 inhibitors in acute myeloid leukemia. OncoTargets and Therapy, 11, 7041–7052. https://doi.org/10.2147/OTT.S171640
  • Turner, A. M., Lin, N. L., Issarachai, S., Lyman, S. D., & Broudy, V. C. (1996). FLT3 receptor expression on the surface of normal and malignant human hematopoietic cells. Blood, 88(9), 3383–3390. Nov 1PMID: 8896403.
  • Vos, T., Allen, C., Arora, M., Barber, R. M., Bhutta, Z. A., Brown, A., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coggeshall, M., Cornaby, L., Dandona, L., Dicker, D. J., Dilegge, T., Erskine, H. E., Ferrari, A. J., Fitzmaurice, C., Fleming, T., … Murray, C. J. L. (2016, October). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388 (10053), 1545–1602. https://doi.org/10.1016/S0140-6736(16)31678-6
  • Wang, B., Yang, L. P., Zhang, X. Z., Huang, S. Q., Bartlam, M., & Zhou, S. F. (2009). New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metabolism Reviews, 41 (4), 573–643. https://doi.org/10.1080/03602530903118729
  • Wang, H., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coates, M. M., Coggeshall, M., Dandona, L., Dicker, D. J., Erskine, H. E., Ferrari, A. J., Fitzmaurice, C., Foreman, K., Forouzanfar, M. H., Fraser, M. S., … Murray, C. J. L. ((2016, October ). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388 (10053), 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1
  • Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., & Moustaid-Moussa, N. (2014). Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of Nutritional Biochemistry, 25(4), 363–376. https://doi.org/10.1016/j.jnutbio.2013.10.002
  • Willian, E. A d L., Pereira, A. F., Castro, A. A. d., Cunha, E. F. F d., & Ramalho, T. C. (2016). Flexibility in the molecular design of acetylcholinesterase reactivators: probing representative conformations by chemometric techniques and docking/QM calculations. Letters in Drug Design & Discovery, 13(5), 360–371. https://doi.org/10.2174/1570180812666150918191550
  • Zanger, U. M., & Schwab, M. (2013, April). Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138 (1), 103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007 PMID 23333322.
  • Zhang, K., Liu, Z., Yao, Y., Qiu, Y., Li, F., Chen, D., Hamilton, D. J., Li, Z., & Jiang, S. (2021). Structure-based design of a selective class I histone deacetylase (HDAC) near-infrared (NIR) probe for epigenetic regulation detection in Triple-Negative Breast Cancer (TNBC). Journal of Medicinal Chemistry, 64 (7), 4020–4033. https://doi.org/10.1021/acs.jmedchem.0c02161
  • Zhong, X., Zhu, Y., Lu, Q., Zhang, J., Ge, Z., & Zheng, S. (2006). Silymarin causes caspases activation and apoptosis in K562 leukemia cells through inactivation of Akt pathway. Toxicology, 227(3), 211–216. https://doi.org/10.1016/j.tox.2006.07.021