437
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

New chalcone derivative, ethyl 2-(4-(3-(benzo[b]thiophen-2-yl)acryloyl)phenoxy)acetate: synthesis, characterization, DFT study, enzyme inhibition activities and docking study

, , , , , & show all
Pages 12260-12267 | Received 14 Jul 2021, Accepted 12 Aug 2021, Published online: 26 Aug 2021

References

  • Abbas, A., Gökçe, H., Bahçeli, S., & Naseer, M. N. (2014). Spectroscopic (FT-IR, Raman, NMR and UV–vis.) and quantum chemical investigations of (E)-3-[4-(pentyloxy) phenyl]-1- phenyl prop-2-en-1-one. Journal of Molecular Structure, 1075, 352–364. https://doi.org/10.1016/j.molstruc.2014.07.001
  • Becke, A. D. (1993). Density‐functional thermochemistry III. The role of exact exchange. Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Chattaraj, P. K., Sarkar, U., & Roy, D. R. (2006). Update 1 of: Electrophilicity index. Chemical Reviews, 106(6), 2065–2091. https://doi.org/10.1021/jo00267a034
  • Dassault Systèmes BIOVIA. (2016). Discovery studio modeling environment, Release 2017. Dassault Systèmes.
  • Dennington, R. D., II, Keith, T. A., & Millam, J. M. (2009). Gauss view, Version 5.0., Semichem Inc.
  • Dimić, D. S., Marković, Z. S., Saso, L., Avdović, E. H., Đorović, J. R., Petrović, I. P., Stanisavljević, D. D., Stevanović, M. J., Potočňák, I., Samoľová, E., Trifunović, S. R., & Dimitrić Marković, J. M. (2019). Synthesis and Characterization of 3-(1-((3,4-Dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione as a Potential Antitumor Agent. Oxidative Medicine and Cellular Longevity, 2019, 2069250Article ID 2069250. https://doi.org/10.1155/2019/2069250
  • Ditchfield, R. J. (1972). Molecular orbital theory of magnetic shielding and magnetic susceptibility. Journal of Chemical Physics, 56(11), 5688–5691. https://doi.org/10.1063/1.1677088
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09 Revision A.1. Gaussian Inc.
  • Gökçe, H., Öztürk, N., Taşan, M., Alpaslan, Y. B., & Alpaslan, G. (2016). Spectroscopic characterization and quantum chemical computations of the 5-(4-pyridyl)-1 H-1, 2, 4-triazole-3-thiol molecule. Spectroscopy Letters, 49(3), 167–179. https://doi.org/10.1080/00387010.2015.1114952
  • Harshbarger, W., Gondi, S., Ficarro, S. B., Hunter, J., Udayakumar, D., Gurbani, D., Singer, W. D., Liu, Y., Li, L., Marto, J. A., & Westover, K. D. (2017). Structural and biochemical analyses reveal the mechanism of glutathione S-transferase Pi 1 inhibition by the anti-cancer compound piperlongumine. The Journal of Biological Chemistry, 292(1), 112–120. https://doi.org/10.1074/jbc.M116.750299
  • İskeleli, N. O., Alpaslan, Y. B., Direkel, Ş., Ertürk, A. G., Süleymanoğlu, N., & Ustabaş, R. (2015). The new Schiff base 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one: experimental, DFT calculational studies and in vitro antimicrobial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 139, 356–366. https://doi.org/10.1016/j.saa.2014.12.071
  • Kahriman, N., İskender, N. Y., Yücel, M., Yaylı, N., Demir, E., & Demirbağ, Z. (2012). Microwave-assisted synthesis of 1,3 '-diaza-flavanone/flavone and their alkyl derivatives with antimicrobial activity. Journal of Heterocyclic Chemistry, 49(1), 71–79. https://doi.org/10.1002/jhet.800
  • Kahriman, N., Serdaroğlu, V., Peker, K., Aydın, A., Usta, A., Fandaklı, S., & Yaylı, N. (2019). Synthesis and biological evaluation of new 2,4,6-trisubstituted pyrimidines and their N-alkyl derivatives. Bioorganic Chemistry, 83, 580–593. https://doi.org/10.1016/j.bioorg.2018.10.068
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Mague, J. T., Mohamed, S. K., Akkurt, M., Ahmed, E. A., & Omran, O. A. (2015). Crystal structure of ethyl 2-[2-((1E)-{(1E)-2-[2-(2-eth-oxy-2-oxoeth-oxy)benzyl-idene]hydrazin-1-yl-idene}meth-yl)phen-oxy]acetate. Acta Crystallographica. Section E, Crystallographic Communications, 71(Pt 1), o16. https://doi.org/10.1107/S2056989014025584
  • Milanovic, Z. B., Antonijevic, M. R., Amic, A. D., & Avdovic, E. H. (2021). Inhibitory activity of quercetin, its metabolite, and standard antiviral drugs towards enzymes essential for SARS-CoV-2: The role of acid–base equilibria. RSC Advances., 11, 2838. https://doi.org/10.1039/d0ra09632f
  • Mohammed, Y. H. I., Naveen, S., Lokanath, N. K., & Khanum, S. A. (2016). Ethyl 2-(4-chloro-3-methylphenoxy) acetate. IUCrData, 1(3), 160416. https://doi.org/10.1107/S2414314616004168
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516. https://doi.org/10.1021/ja00364a005
  • Pearson, R. G. (1989). Absolute electronegativity and hardness: applications to organic chemistry. The Journal of Organic Chemistry, 54(6), 1423–1430. https://doi.org/10.1021/jo00267a034
  • Radhakrishnan, S., Shimmon, R., Conn, C., & Baker, A. (2015). Design, synthesis and biological evaluation of hydroxy substituted amino chalcone compounds for antityrosinase activity in B16 cells. Bioorganic Chemistry, 62, 117–123. https://doi.org/10.1016/j.bioorg.2015.08.005
  • Smit, F. J., Biljon, R. A., Birkholtz, L.-M., & N'Da, D. D. (2015). Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. European Journal of Medicinal Chemistry, 90, 33–44. https://doi.org/10.1016/j.ejmech.2014.11.016
  • Sonar, V. N., Parkin, S., & Crooks, P. A. (2003). (Z)-2-(Benzo [b] thiophen-3-ylmethylene)-1-azabicyclo [2.2.2] octan-3-one. Acta Crystallographica Section E Structure Reports Online, 59(11), o1726–o1728. https://doi.org/10.1107/S1600536803022797
  • Sonar, V. N., Parkin, S., & Crooks, P. A. (2004). 4-(Benzo [b] thiophen-3-yl)-1-methylpiperidine-4-carbonitrile. Acta Crystallographica Section E Structure Reports Online, 60(9), o1533–o1534. https://doi.org/10.1107/S1600536804019543
  • Taslimi, P., Işık, M., Türkan, F., Durgun, M., Türkeş, C., Gülçin, İ., & Beydemir, Ş. (2020). Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: Biological evaluation and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 39. https://doi.org/10.1080/07391102.2020.1790422.
  • Taslimi, P., Türkan, F., Turhan, K., Karaman, H. S., Turgut, Z., & Gulcin, İ. (2020). 2H‐Indazolo[2,1b]phthalazinetrione derivatives: Inhibition on some metabolic enzymes and molecular docking studies. Journal of Heterocyclic Chemistry, 57(8), 3116–3125. https://doi.org/10.1002/jhet.4019
  • Turhan, K., Pektaş, B., Türkan, F., Tuğcu, F. T., Turgut, Z., Taslimi, P., Karaman, H. S., & Gülçin, İ. (2020). Novel benzo[b]xanthene derivatives: Bismuth(III) triflate-catalyzed one-pot synthesis, characterization, and acetylcholinesterase, glutathione S-transferase, and butyrylcholinesterase inhibitory properties. Archiv Der Pharmazie, 353(8), e2000030. https://doi.org/10.1002/ardp.202000030
  • Türkan, F. (2021). Investigation of the toxicological and inhibitory effects of some benzimidazole agents on acetylcholinesterase and butyrylcholinesterase enzymes. Archives of Physiology and Biochemistry, 127 (2), 97–101. https://doi.org/10.1080/13813455.2019.1618341
  • Türkan, F., Calimli, M. H., Kanberoğlu, G. S., & Karaman, M. (2021). Inhibition effects of isoproterenol, chlorpromazine, carbamazepine, tamoxifen drugs on glutathione S-transferase, cholinesterases enzymes and molecular docking studies. Journal of Biomolecular structure & Dynamics, 39(9), 3277–3284. https://doi.org/10.1080/07391102.2020.1763200
  • Türkan, F., Huyut, Z., Huyut, M. T., & Calimli, M. H. (2019). In vivo biochemical evaluations of some β-lactam group antibiotics on glutathione reductase and glutathione S-transferase enzyme activities. Life Sciences, 231, 116572. https://doi.org/10.1016/j.lfs.2019.116572
  • Türkan, F., Huyut, Z., Taslimi, P., & Gülçin, İ. (2019). The effects of some antibiotics from cephalosporin groups on the acetylcholinesterase and butyrylcholinesterase enzymes activities in different tissues of rats. Archives of Physiology and Biochemistry, 125(1), 12–18. https://doi.org/10.1080/13813455.2018.1427766
  • Türkan, F., Taslimi, P., Abdalrazaq, S. M., Aras, A., Erden, Y., Celebioglu, H. U., Tuzun, B., Ağırtaş, M. S., & Gülçin, İ. (2021). Determination of anticancer properties and inhibitory effects of some metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, alphaglycosidase of some compounds with molecular docking study. Journal of Biomolecular Structure and Dynamics, 39(10), 3693–3702. https://doi.org/10.1080/07391102.2020.1768901
  • Türkan, F., Calimli, M. H., Akgun, A., Gulbagca, F., & Sen, F. (2020). Toxicological effects of some antiparasitic drugs on equine liver glutathione S-Transferase enzyme activity. Journal of Pharmaceutical and Biomedical Analysis, 180, 113048. https://doi.org/10.1016/j.jpba.2019.113048
  • Unver, Y., Tuluk, M., Kahriman, N., Emirik, M., Bektaş, E., & Direkel, Ş. (2019). New chalcone derivatives with Schiff base-thiophene: Synthesis, biological activity, and molecular docking studies. Russian Journal of General Chemistry, 89(4), 794–799. https://doi.org/10.1134/S107036321904025X
  • Ventura, T., Calixto, S., Abrahim-Vieira, B., Souza, A., Mello, M., Rodrigues, C., Miranda, L., de Souza, R., Leal, I., Lasunskaia, E., & Muzitano, M. (2015). Antimycobacterial and anti-inflammatory activities of substituted chalcones focusing on an anti-tuberculosis dual treatment approach. Molecules, 20(5), 8072–8093. https://doi.org/10.3390/molecules20058072
  • Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251–8260. https://doi.org/10.1021/ja00179a005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.