1,737
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Arjunetin as a promising drug candidate against SARS-CoV-2: molecular dynamics simulation studies

, , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 12358-12379 | Received 25 May 2021, Accepted 16 Aug 2021, Published online: 17 Sep 2021

References

  • Adevaiton, B. D. S., Dulce, H. S. S., Vanderlan, S. B., Luciana, A. S., Tome, M. S., & Oswaldo, B. (2009). Antioxidant properties of plant extract; an EPR and DFT comparative study of the reaction with DPPH, TEMPOL and spin trap DMPO. Journal of the Brazilian Chemical Society, 20, 1483–1492.
  • Andersen, H. C. (1983). Rattle: A "velocity" version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52 (1), 24–34. https://doi.org/10.1016/0021-9991(83)90014-1
  • Basu, M., Czinn, S. J., & Blanchard, T. G. (2004). Absence of catalase reduces long-term survival of Helicobacter pylori in macrophage phagosomes. Helicobacter, 9(3), 211–216. https://doi.org/10.1111/j.1083-4389.2004.00226.x
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688.
  • Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Crowley, M., Walker, R. C., & Zhang, W. (2008). Amber 10.
  • Concetta, R., Carmen, F., Alessia, Z., Cristina, S., Gargano, F., Coscioni, E., Rossi, F., & Capuano, A. (2021). Cardiac events potentially associated to remdesivir: An analysis from the european spontaneous adverse event reporting system. Pharmaceuticals, 14, 611. https://doi.org/10.3390/ph14070611
  • Cooper, E. L. (2005). Cam, eCAM, bioprospecting: The 21st century pyramid. Evidence-Based Complementary and Alternative Medicine, 2(2), 125–127. https://doi.org/10.1093/ecam/neh094
  • Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7(3), R55–R60. https://doi.org/10.1016/S0969-2126(99)80033-1
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Day, W. A., Jr., Sajecki, J. L., Pitts, T. M., & Joens, L. A. (2000). Role of catalase in Campylobacter jejuniintracellular survival. Infection and Immunity, 68(11), 6337–6345. https://doi.org/10.1128/IAI.68.11.6337-6345.2000
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Dickson, C. J., Madej, B. D., Skjevik, Å. A., Betz, R. M., Teigen, K., Gould, I. R., & Walker, R. C. (2014). Lipid14: The amber lipid force field. Journal of Chemical Theory and Computation, 10(2), 865–879. https://doi.org/10.1021/ct4010307
  • Dwivedi, S. (2007). Terminalia arjuna Wight &Arn.-a useful drug for cardiovascular disorders. Journal of Ethnopharmacology, 114(2), 114–129. https://doi.org/10.1016/j.jep.2007.08.003
  • Dwivedi, S., & Chopra, D. (2014). Revisiting Terminalia arjuna - An ancient cardiovascular drug. Journal of Traditional and Complementary Medicine, 4(4), 224–231. https://doi.org/10.4103/2225-4110.139103
  • Fox, T., & Kollman, P. A. (1998). Application of the RESP methodology in the parametrization of organic solvents. The Journal of Physical Chemistry B, 102(41), 8070–8079. https://doi.org/10.1021/jp9717655
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M.,… & Fox, D. J. (2009). Gaussian 09, Revision D.01.Gaussian, Inc., Wallingford, CT.
  • Gauthaman, K., Banerjee, S. K., Dinda, A. K., Ghosh, C. C., & Maulik, S. K. (2005). Terminalia arjuna (Roxb.) protects rabbit heart against ischemic-reperfusion injury: Role of antioxidant enzymes and heat shock protein. Journal of Ethnopharmacology, 96(3), 403–409. https://doi.org/10.1016/j.jep.2004.08.040
  • Ghodke, P. P., Bommisetti, P., Deepak, T. N., & Pradeepkumar, P. I. (2019). Synthesis of N2-deoxyguanosine modified DNAs and the studies on their translesion synthesis by the E. coli DNA polymerase IV. The Journal of Organic Chemistry, 84(4), 1734–1747. https://doi.org/10.1021/acs.joc.8b02082
  • Grottesi, A., Bešker, N., Emerson, A., Manelfi, C., Beccari, A. R., Frigerio, F., Lindahl, E., Cerchia, C., & Talarico, C. (2020). Computational Studies of SARS-CoV-2 3CLpro: Insights from MD Simulations. International Journal of Molecular Sciences, 21(15), 5346. https://doi.org/10.3390/ijms21155346
  • Honda, T., Murae, T., Tsuyuki, T., Takahashi, T., & Sawai, M. (1976). Chemical constituents from bark of Terminalia arjuna. Bulletin of the Chemical Society of Japan, 49(11), 3213–3225. https://doi.org/10.1246/bcsj.49.3213
  • Hua, Y. C., Chun, C. C. L., & Ta, C. L. (2002). Anti-herpes simplex virus type 2 activity of casurinin from the bark of Terminalia arjuna Linn. Antiviral Research, 55, 447–455.
  • Jain, S., Yadav, P. P., Gill, V., Vasudeva, N., & Singla, N. (2009). Terminalia arjuna a sacred medicinal plant, phytochemical and pharmacological profile. Phytochemistry Reviews, 8(2), 491–502. https://doi.org/10.1007/s11101-009-9134-8
  • Justyna, P., Moriola, B. S., & Ivana, A. (2013). Study of the antioxidant properties of beers using electron paramagnetic resonance. Food Chemistry, 141, 3042–3049.
  • Karthikeyan, B. R., Sarala Bai, K., Gauthaman, K., Sathish, K. S., & Niranjali, D. S. (2003). Cardioprotective effect of the alcoholic extract of Terminalia arjuna bark in an in vivo model of myocardial ischemic reperfusion injury. Life Sciences, 73(21), 2727–2739. https://doi.org/10.1016/S0024-3205(03)00671-4
  • Kartik, M., Prasanth, G., Sushank, A., Gayathri, C., Basavaraju, R., & Mukesh, D. (2020). Dual inhibitors of SARS-CoV-2 proteases: Pharmacophore and molecular dynamics based drug repositioning and phytochemical leads. Journal of Biomolecular Structure and Dynamics, 1-14.
  • Kim, C.-H. (2021). Anti–SARS-CoV-2 natural products as potentially therapeutic agents. Frontiers in Pharmacology, 12, 590509. https://doi.org/10.3389/fphar.2021.590509
  • Larini, L., Mannella, R., & Leporini, D. L. (2007). Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. The Journal of Chemical Physics, 126(10), 104101. https://doi.org/10.1063/1.2464095
  • Leff, J. A., Parsons, P. E., Day, C. E., Oppegard, M. A., Moore, E. E., Moore, F., & Repine, J. E. (1992). Increased hydrogen peroxide scavenging and catalase activity in serum from septic patients who subsequently develop the adult respiratory distress syndrome. American Review of Respiratory Disease, 146(4), 985–989. https://doi.org/10.1164/ajrccm/146.4.985
  • Lukas, V. S., Maren, B., Mira, A., Leonie, S., Christiane, S. H., Eike, S., Daniel, T., Ulf, D., Carina, E., Oliver, W., & Adalbert, K. (2021). Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses, 13, 609.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Manca, C., Simon Paul, S., Barry, C. E., III, Freedman, V. H., & Kaplan, G. (1999). Mycobacterium tuberculosis catalase and peroxidase activitiesand resistance to oxidative killing in humanmonocytesinvitro. Infection and Immunity, 67(1), 74–79. https://doi.org/10.1128/IAI.67.1.74-79.1999
  • Manli, W., Cao, R., Leike, Z., Xinglou, Y., Jia, L., Mingyue, X., Zhengli, S., Zhihong, H., Wu, Z., & Gengfu, X. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Maryam, H., Wanqiu, C., Daliao, X., & Charles, W. (2021). Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precision Clinical Medicine, 18(4), 1–16. https://doi.org/10.1093/pcmedi/pbab001
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Moure, A., Franco, D., Sineiro, J., Domı́nguez, H., Núñez, M. J., & Lema, J. M. (2001). Antioxidant activity of extracts from Gevuinaavellana and Rosa rubiginosa defatted seeds. Food Research International, 34(2–3), 103–109. https://doi.org/10.1016/S0963-9969(00)00136-8
  • Newcomb, W. W., & Brown, J. C. (2012). Internal catalase protects Herpes Simplex virus from inactivation by hydrogen peroxide. Journal of Virology, 86(21), 11931–11934. https://doi.org/10.1128/JVI.01349-12
  • Ningijian, L., & David, D. K. (2014). Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules, 19, 19181–19208.
  • Novel Coronavirus (2019-nCoV) situation reports - 116, 15 May. (2020). https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situation-reports.
  • Oleg, T., & Olson, A. J. (2010). Auto Dock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Orhan, D. D., Yeşilada, F. E. E., Tsuchiya, K., Takaishi, Y., & Kawazoe, K. (2007). Antioxidant activity of two flavonol glycosides from Cirsiumhypoleucum DC through bioassay-guided fractionation. Turkish Journal of Pharmaceutical Sciences, 41, 1–14.
  • Padma Sree, T. N., Krishna Kumar, S., Senthilkumar, A., Aradhyam, G. K., and Gummadi, S. N. P. (2007). In vitro effect of Terminalia arjuna bark extract on antioxidant enzyme catalase. Journal of Pharmacology and Toxicology, 2(8), 698–708. https://doi.org/10.3923/jpt.2007.698.708
  • Patil, U. H., & Gaikwad, D. K. (2011). Phytochemical evaluation and bactericidal potential of Terminalia arjuna stem bark. International Journal of Pharmaceutical Sciences and Research, 2, 614–619.
  • Pawar, R. S., & Bhutani, K. K. (2005). Effect of oleanane triterpenoids from Terminalia arjuna-a cardioprotective drug on the process of respiratory oxyburst. Phytomedicine, 12(5), 391–393. https://doi.org/10.1016/j.phymed.2003.11.007
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., III, DeBolt, S., Ferguson, D., Seibel, G., & Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1–3), 1–41. https://doi.org/10.1016/0010-4655(95)00041-D
  • Petrova, S. S., & Solov'ev, A. D. (1997). The origin of the method of steepest descent. Historia Mathematica, 24(4), 361–375. https://doi.org/10.1006/hmat.1996.2146
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Priyadarshinee, S. P. P., Bommisetti, P., Diveshkumar, K. V., & Pradeepkumar, P. I. (2016). Benzothiazole hydrazones of furylbenzamides preferentially stabilize c-MYC and c-KIT1 promoter G-quadruplex DNAs. Organic & Biomolecular Chemistry, 14, 5779–5793.
  • Roe, D. R., & Cheatham, T. E. (2013). III, TE PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roth, S., & Droge, W. (1987). Regulation of T cell growth factor (TCGF) production by hydrogen peroxide. Cellular Immunology, 108(2), 417–424. https://doi.org/10.1016/0008-8749(87)90224-3
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013a). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013b). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Schreck, R., Rieber, P., & Baeuerle, P. A. (1991). Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappaB transcription factor and HIV-1. The EMBO Journal, 10(8), 2247–2258.
  • Seong, W. C., Jin, S., Shin, S., Park, J., Eunhye, J., Yun, G. P., Jiho, L., Sung, J. K., Hun, Jun, P., Jung, H. L., Sung, M. P., Sung, H. M., Kiwon, B., & Yun, Y. G. (2020). Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Research, 184, 104955. https://doi.org/10.1016/j.antiviral.2020.104955
  • Shao, J., Tanner, S. W., Thompson, N., & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation, 3(6), 2312–2334. https://doi.org/10.1021/ct700119m
  • Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain.
  • Sinosh, S., Dharshini, G., Aditi, G. M., Akshay, U., & Vidya, N. (2021). Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies. Computers in Biology and Medicine, 132, 104325.
  • Sinosh, S., Dharshini, G., Shweta, C., Priya, K., Akshay, U., Aditi, G. M., & Vidya, N. (2020). Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies-deciphering the scope of repurposed drugs. Computers in Biology and Medicine, 126, 104054.
  • Stower, H. (2020). Lopinavir-titonavir in severe COVID-19. Nature Medicine, 26, 465.
  • Sumitra, M., Manikandan, P., Kumar, D. A., Arutselvan, N., Balakrishna, K., Manohar, B. M., & Puvanakrishnan, R. (2001). Experimental myocardial necrosis in rats: Role of arjunolic acid on platelet aggregation, coagulation and antioxidant status. Molecular and Cellular Biochemistry, 224(1-2), 135–142.
  • Sunyana, J., Prem, P.Y., Vikrant, G., Neeru, V., Neelam, S. (2009). Terminalia arjuna a sacred medicinal plant, phytochemical and pharmacological profile. Phytochemistry Reviews, 8, 491–502.
  • Tripathi, V. K., & Singh, B. (1996). Terminalia arjuna - its present status (a review). Oriental Journal of Chemistry, 12, 1–16.
  • Wakchaure, P. D., Ghosh, S., & Ganguly, B. (2020). Revealing the inhibition mechanism of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 by remdesivir and nucleotide analogues: A molecular dynamics simulation study. The Journal of Physical Chemistry B, 124(47), 10641–10652. https://doi.org/10.1021/acs.jpcb.0c06747
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • WHO. (2012). The evolving threat of antimicrobial resistance: Options for action. WHO.
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xian, Y., Zhang, J., Bian, Z., Zhou, H., Zhang, Z., Lin, Z., & Xu, H. (2020). Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharmaceutica Sinica B, 10(7), 1163–1174. https://doi.org/10.1016/j.apsb.2020.06.002
  • Yogesh, K., Harvijay, S., & Chirag, N. P. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210–1223.
  • Yu, W.-L., Toh, H. S., Liao, C.-T., & Chang, W.-T. (2021). A double-edged sword-cardiovascular concerns of potential anti-COVID-19 drugs. Cardiovascular Drugs and Therapy, 35(2), 205–214. https://doi.org/10.1007/s10557-020-07024-7
  • Zhaoyan, Z., Yuchen, X., Lingqing, X., Ye, L., Guanmin, J., Wang, W., Li, B., Tianchuan, Z., Qingqin, T., Lantian, T., Haibo, Z., Xi, H., & Hong, S. (2021). Glycyrrhizic acid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Applied Materials & Interfaces, 2021(13), 18.
  • Zivkovic, J., Zekovic, Z., Music, I., Tumbas, V., Cvetkovic, D., & Spasojevic, I. (2009). Antioxidant properties of phenolics in Castanea sativa Mill. extracts. Food Technology and Biotechnology, 47, 421–427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.