508
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Structure-based virtual screening and molecular dynamics simulation for the identification of sphingosine kinase-2 inhibitors as potential analgesics

, , , , ORCID Icon &
Pages 12472-12490 | Received 24 Apr 2021, Accepted 18 Aug 2021, Published online: 14 Sep 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001.
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510–14. https://doi.org/10.1093/nar/gkp322
  • Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 71(1), 261–277. https://doi.org/10.1002/prot.21715
  • Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 4(1), 1–13. https://doi.org/10.1038/nprot.2008.197
  • Canlas, J., Holt, P., Carroll, A., Rix, S., Ryan, P., Davies, L., Matusica, D., Pitson, S. M., Jessup, C. F., Gibbins, I. L., & Haberberger, R. V. (2015). Sphingosine kinase 2-deficiency mediated changes in spinal pain processing. Frontiers in Molecular Neuroscience, 8, 29(AUGUST). https://doi.org/10.3389/fnmol.2015.00029
  • Chakraborty, S., & Majumdar, S. (2021). Natural products for the treatment of pain: Chemistry and pharmacology of Salvinorin A, mitragynine, and collybolide. Biochemistry, 60(18), 1381–1400. https://doi.org/10.1021/acs.biochem.0c00629
  • Colovos, Chris, and Todd, O. Yeates. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein science, 2(9), 1511–1519.
  • Divella, M., Vetrugno, L., Bertozzi, S., Seriau, L., Cedolini, C., & Bove, T. (2020). Patient-reported pain and other symptoms among breast cancer survivors: Prevalence and risk factors. Tumori Journal, 106(6), 480–490. https://doi.org/10.1177/0300891620908930
  • Doolen, S., Iannitti, T., Donahue, R. R., Shaw, B. C., Grachen, C. M., & Taylor, B. K. (2018). Fingolimod reduces neuropathic pain behaviors in a mouse model of multiple sclerosis by a Sphingosine-1 phosphate receptor 1-dependent inhibition of central sensitization in the dorsal horn. Pain, 159(2), 224–238. https://doi.org/10.1097/j.pain.0000000000001106
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymology, 277, 396–404. https://doi.org/10.1016/S0076-6879(97)77022-8.
  • Geourjon, C., & Deléage, G. (1995). Sopma: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Grenald, S. A., Doyle, T. M., Zhang, H., Slosky, L. M., Chen, Z., Largent-Milnes, T. M., Spiegel, S., Vanderah, T. W., & Salvemini, D. (2017). Targeting the S1P/S1PR1 axis mitigates cancer-induced bone pain and neuroinflammation. Pain, 158(9), 1733–1742. https://doi.org/10.1097/j.pain.0000000000000965
  • Gurung, A. B. (2020). In silico structure modelling of SARS-CoV-2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors. Gene Reports, 21, 100860. https://doi.org/10.1016/j.genrep.2020.100860
  • Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the raptorx web server. Nat Protoc, 7(8), 1511–1522. https://doi.org/10.1038/nprot.2012.085
  • Kiefer, F., Arnold, K., Künzli, M., Bordoli, L., & Schwede, T. (2009). The SWISS-MODEL repository and associated resources. Nucleic Acids Research, 37(Database issue), D387–92. https://doi.org/10.1093/nar/gkn750
  • Koulouridi, E., Valli, M., Ntie-Kang, F., & Bolzani, V. D. S. (2019). A primer on natural product-based virtual screening. Physical Sciences Reviews, 4(6), 251- 290. https://doi.org/10.1515/psr-2018-0105
  • Kumar, R., Kumar, A., Långström, B., & Darreh-Shori, T. (2017). Discovery of novel choline acetyltransferase inhibitors using structure-based virtual screening. Scientific Reports, 7(1), 16287–16217. https://doi.org/10.1038/s41598-017-16033-w
  • Kumar, T. A. (2013). CFSSP : Chou and fasman secondary structure prediction server. Wide Spectrum, 1(9), 15–19.
  • Leung, E. J. Y., Abraham, A. D., Wong, B. A., Kruse, L. C., Clark, J. J., & Land, B. B. (2019). Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. BioRxiv, 45(7), 1105–1114. https://doi.org/10.1101/556373
  • Lin, L., Hao, Z., Cao, P., & Yuchi, Z. (2020). Homology modeling and docking study of diamondback moth ryanodine receptor reveals the mechanisms for channel activation, insecticide binding and resistance. Pest Management Science, 76(4), 1291–1303. https://doi.org/10.1002/ps.5640
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3), 3–25.
  • Lovell, S. C., Davis, I. W., Arendall, W. B., De Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Cα geometry: φ,ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Malik, A., Bisht, K., Kumar, P., Sinha, S., Tomar, S., & Pant, K. (2021). In-silico studies for unraveling medicinal properties of Sanjeevani. Materials Today: Proceedings, 3, 12. https://doi.org/10.1016/j.matpr.2021.02.515
  • Mertsch, K., Will, M., Czechtizky, W., Griesang, N., Marker, A., & Olsen, J. (2015). ADME Profiling: An introduction for the medicinal chemist. Small Molecule Medicinal Chemistry: Strategies and Technologies, 21(9), 353–377. https://doi.org/10.1002/9781118771723.ch13
  • Ongaro, A., Oselladore, E., Memo, M., Ribaudo, G., & Gianoncelli, A. (2021). Insight into the LFA-1/SARS-CoV-2 Orf7a Complex by protein–protein docking, molecular dynamics, and MM-GBSA calculations. Journal of Chemical Information and Modeling, 61(6), 2780–2787. https://doi.org/10.1021/acs.jcim.1c00198
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Piekielna-Ciesielska, J., Artali, R., Azzam, A. A. H., Lambert, D. G., Kluczyk, A., Gentilucci, L., & Janecka, A. (2020). Pharmacological characterization of μ-opioid receptor agonists with biased G protein or β-arrestin signaling, and computational study of conformational changes during receptor activation. Molecules (Basel, Switzerland), 26(1), 13. https://doi.org/10.3390/molecules26010013
  • Release, Schrödinger. (2017). 2: LigPrep, Schrödinger. New York: LLC.
  • Ren, R., Pang, B., Han, Y., & Li, Y. (2021). A glimpse of the structural biology of the metabolism of Sphingosine-1-phosphate. Contact, 4, 251525642199560. 1. https://doi.org/10.1177/2515256421995601
  • Saldívar-González, F. I., Valli, M., Andricopulo, A. D., Da Silva Bolzani, V., & Medina-Franco, J. L. (2019). Chemical space and diversity of the NuBBE database: A chemoinformatic characterization. Journal of Chemical Information and Modeling, 59(1), 74–85. https://doi.org/10.1021/acs.jcim.8b00619
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Shakeel, E., Kumar, R., Sharma, N., Akhtar, S., Ahmad Khan, M. K., Lohani, M., & Siddiqui, M. H. (2019). Computational outlook of marine compounds as anti-cancer representatives targeting BCL-2 and survivin. Current Computer-Aided Drug Design, 15(3), 265–276. https://doi.org/10.2174/1573409915666190130173138
  • Spoel, D. V. D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Stitou, M., Toufik, H., Bouachrine, M., & Lamchouri, F. (2021). Quantitative structure-activity relationships analysis, homology modeling, docking and molecular dynamics studies of triterpenoid saponins as Kirsten rat sarcoma inhibitors. Journal of Biomolecular Structure & Dynamics, 39(1), 152–170. https://doi.org/10.1080/07391102.2019.1707122
  • Tam, B., Sinha, S., & Wang, S. M. (2020). Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model. Computational and Structural Biotechnology Journal, 18, 4033–4039. https://doi.org/10.1016/j.csbj.2020.11.041
  • Tools, Maestro-Desmond Interoperability (2018). Schrödinger Release 2018-3: Prime. New York: Schrödinger, LLC.
  • Verscheijden, L. F. M., Litjens, C. H. C., Koenderink, J. B., Mathijssen, R. H. J., Verbeek, M. M., de Wildt, S. N., & Russel, F. G. M. (2021). Physiologically based pharmacokinetic/pharmacodynamic model for the prediction of morphine brain disposition and analgesia in adults and children. PLoS Computational Biology, 17(3), e1008786. https://doi.org/10.1371/journal.pcbi.1008786
  • Vora, J., Patel, S., Sinha, S., Sharma, S., Srivastava, A., Chhabria, M., & Shrivastava, N. (2019). Structure based virtual screening, 3D-QSAR, molecular dynamics and ADMET studies for selection of natural inhibitors against structural and non-structural targets of chikungunya. Journal of Biomolecular Structure & Dynamics, 37(12), 3150–3161. https://doi.org/10.1080/07391102.2018.1509732
  • Walker, J. M., Yao, G.-Q., Siu, E., Zhu, M., Sun, B-h., Simpson, C., & Insogna, K. L. (2021). An unanticipated role for sphingosine Kinase-2 in bone and in the anabolic effect of parathyroid hormone. Endocrinology, 162(5), bqab042. https://doi.org/10.1210/endocr/bqab042
  • Wang, E., Fu, W., Jiang, D., Sun, H., Wang, J., Zhang, X., Weng, G., Liu, H., Tao, P., & Hou, T. (2021). VAD-MM/GBSA: A variable atomic dielectric MM/GBSA model for improved accuracy in protein-ligand binding free energy calculations. Journal of Chemical Information and Modeling, 61(6), 2844–2856. https://doi.org/10.1021/acs.jcim.1c00091
  • Wang, L., Pavlov, P. F., Kumar, R., & Winblad, B. (2020). FKBP51‐Hsp90 complex as a novel therapeutic target for Alzheimer’s disease. Alzheimer’s & Dementia, 16(S9), e042684. https://doi.org/10.1002/alz.042684
  • Wang, Z., Min, X., Xiao, S.-H., Johnstone, S., Romanow, W., Meininger, D., Xu, H., Liu, J., Dai, J., An, S., Thibault, S., & Walker, N. (2013). Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure (London, England : 1993), 21(5), 798–809. https://doi.org/10.1016/j.str.2013.02.025
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-Web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–10. https://doi.org/10.1093/nar/gkm290
  • Xun, C., Chen, M. B., Qi, L., Tie-Ning, Z., Peng, X., Ning, L., Zhi-Xiao, C., & Li-Wei, W. (2015a). Targeting sphingosine kinase 2 (SphK2) by ABC294640 inhibits colorectal cancer cell growth in vitro and in vivo. Journal of Experimental & Clinical Cancer Research, 34(1), 94. https://doi.org/10.1186/s13046-015-0205-y.
  • Xun, C., Chen, M. B., Qi, L., Tie-Ning, Z., Peng, X., Ning, L., Zhi-Xiao, C., & Li-Wei, W. (2015b). Targeting sphingosine kinase 2 (SphK2) by ABC294640 inhibits colorectal cancer cell growth in vitro and in vivo. Journal of Experimental & Clinical Cancer Research, 34(1), 94. https://doi.org/10.1186/s13046-015-0205-y.
  • Zhang, J., Zhang, M., Yu, J., Shang, Y., Jiang, K., Jia, Y., Wang, J., & Yang, K. (2020). Investigating the binding mechanism of sphingosine kinase 1/2 inhibitors: insights into subtype selectivity by homology modeling, molecular dynamics simulation and free energy calculation studies. Journal of Molecular Structure, 1208, 127900. https://doi.org/10.1016/j.molstruc.2020.127900
  • Zhang, S., Schweitzer-Stenner, R., & Urbanc, B. (2020). Do molecular dynamics force fields capture conformational dynamics of alanine in water? Journal of Chemical Theory and Computation, 16(1), 510–527. https://doi.org/10.1021/acs.jctc.9b00588
  • Zhao, M. L., Wang, W., Nie, H., Cao, S. S., & Du, L. F. (2018). In silico structure prediction and inhibition mechanism studies of AtHDA14 as revealed by homology modeling, docking, molecular dynamics simulation. Computational Biology and Chemistry, 75, 120–130. https://doi.org/10.1016/j.compbiolchem.2018.05.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.