434
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of flavonoids from banana pseudostem and flower (quercetin and catechin) as potent inhibitors of α-glucosidase: An in silico perspective

, , , , , & show all
Pages 12491-12505 | Received 01 May 2021, Accepted 18 Aug 2021, Published online: 06 Sep 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adisakwattana, S., Jiphimai, P., Prutanopajai, P., Chanathong, B., Sapwarobol, S., & Ariyapitipan, T. (2010). Evaluation of alpha-glucosidase, alpha-amylase and protein glycation inhibitory activities of edible plants . International Journal of Food Sciences and Nutrition, 61(3), 295–305. https://doi.org/10.3109/09637480903455963
  • Agamah, F. E., Mazandu, G. K., Hassan, R., Bope, C. D., Thomford, N. E., Ghansah, A., & Chimusa, E. R. (2020). Computational/in silico methods in drug target and lead prediction. Briefings in Bioinformatics, 21(5), 1663–1675. https://doi.org/10.1093/bib/bbz103
  • Akmal, M., & Wadhwa, R. (2021). Alpha glucosidase inhibitors. In StatPearls. StatPearls Publishing.
  • Bhaskar, J. J., S, M., Chilkunda, N. D., & Salimath, P. V. (2012). Banana (Musa sp. var. elakki bale) flower and pseudostem: Dietary fiber and associated antioxidant capacity. Journal of Agricultural and Food Chemistry, 60(1), 427–432. https://doi.org/10.1021/jf204539v
  • Cerf, M. E. (2013). Beta cell dysfunction and insulin resistance. Frontiers in Endocrinology, 4(37), 37. https://doi.org/10.3389/fendo.2013.00037
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Daneman, R., & Prat, A. (2015). The blood-brain barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412
  • Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Grover, J. K., Yadav, S., & Vats, V. (2002). Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology, 81(1), 81–100. https://doi.org/10.1016/s0378-8741(02)00059-4
  • Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N., Muthukrishnan, V., Turner, S., Swainston, N., Mendes, P., & Steinbeck, C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Research, 44(D1), D1214–9. https://doi.org/10.1093/nar/gkv1031
  • Hiyoshi, T., Fujiwara, M., & Yao, Z. (2017). Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes. Journal of Biomedical Research, 33(1), 1–16.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–95. https://doi.org/10.1093/nar/gkaa971
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Liu, J., Ren, Z. H., Qiang, H., Wu, J., Shen, M., Zhang, L., & Lyu, J. (2020). Trends in the incidence of diabetes mellitus: Results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health, 20(1), 1415–1412. https://doi.org/10.1186/s12889-020-09502-x
  • Massi, A., Bortolini, O., Ragno, D., Bernardi, T., Sacchetti, G., Tacchini, M., & De Risi, C. (2017). Research progress in the modification of quercetin leading to anticancer agents. Molecules, 22(8), 1270. https://doi.org/10.3390/molecules22081270
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations . Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 4329–4327. https://doi.org/10.1038/s41598-018-22631-z
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33–34. https://doi.org/10.1186/1758-2946-3-33
  • Okuyama, M., Mori, H., Nakai, W. S., Kang, M. S., Kim, Y. M., Nishimoto, M., … Kimura, A. (2008). Molecular mechanism of a-glucosidase. Carbohydrate-Active Enzymes: Structure, Function and Applications, 163, 64.
  • Padam, B. S., Tin, H. S., Chye, F. Y., & Abdullah, M. I. (2014). Banana by-products: An under-utilized renewable food biomass with great potential. Journal of Food Science and Technology, 51(12), 3527–3545. https://doi.org/10.1007/s13197-012-0861-2
  • Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320–330. https://doi.org/10.1016/S2221-1691(12)60032-X
  • Prachayasittikul, V., & Prachayasittikul, V. (2016). P-glycoprotein transporter in drug development. EXCLI Journal, 15, 113–118. https://doi.org/10.17179/excli2015-768
  • Pundir, S., Martin, M. J., & O'Donovan, C. (2017). UniProt protein knowledgebase. Methods in Molecular Biology (Clifton, N.J.), 1558, 41–55. https://doi.org/10.1007/978-1-4939-6783-4_2
  • Rachdaoui, N. (2020). Insulin: The friend and the foe in the development of type 2 diabetes mellitus. International Journal of Molecular Sciences., 21(5), 1770. https://doi.org/10.3390/ijms21051770
  • Ramu, R., Shirahatti, P. S., Anilakumar, K. R., Nayakavadi, S., Zameer, F., Dhananjaya, B. L., & Prasad, M. N. (2017a). Assessment of nutritional quality and global antioxidant response of banana (Musa sp. CV. Nanjangud Rasa Bale) pseudostem and flower. Pharmacognosy Research, 9(Suppl 1), S74–S83. https://doi.org/10.4103/pr.pr_67_17
  • Ramu, R., Shirahatti, P. S., Dhanabal, S. P., Zameer, F., Dhananjaya, B. L., & Nagendra Prasad, M. N. (2017). Investigation of antihyperglycaemic activity of banana (Musa sp. Var. Nanjangud rasa bale) flower in normal and diabetic rats. Pharmacognosy Magazine, 13(Suppl 3), S417–S423. https://doi.org/10.4103/0973-1296.216331
  • Ramu, R., Shirahatti, P. S., Zameer, F., & Nagendra Prasad, M. N. (2015). Investigation of antihyperglycaemic activity of banana (Musa sp. var. Nanjangud rasa bale) pseudostem in normal and diabetic rats. Journal of the Science of Food and Agriculture, 95(1), 165–173. https://doi.org/10.1002/jsfa.6698
  • Salehi, B., Ata, A., V Anil Kumar, N., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Abdulmajid Ayatollahi, S., Tsouh Fokou, P. V., Kobarfard, F., Amiruddin Zakaria, Z., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W. N., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., … Sharifi-Rad, J. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551
  • Sander, T., Freyss, J., von Korff, M., Reich, J. R., & Rufener, C. (2009). OSIRIS, an entirely in-house developed drug discovery informatics system. Journal of Chemical Information and Modeling, 49(2), 232–246. https://doi.org/10.1021/ci800305f
  • Schmeltz, L., & Metzeger, B. (2007). Diabetes/Syndrome X. In J. B. Taylor, and D. J. Triggle, (Eds.).Comprehensive Medicinal Chemistry II (pp. 417–458). Elsevier.
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–7. https://doi.org/10.1093/nar/gky473
  • Tran, N., Pham, B., & Le, L. (2020). Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology, 9(9), 252. https://doi.org/10.3390/biology9090252
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for coastal and land-margin research. Oregon Graduate Institute of Science and Technology.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–303. https://doi.org/10.1093/nar/gky427
  • Yamamoto, K., Miyake, H., Kusunoki, M., & Osaki, S. (2011). Steric hindrance by 2 amino acid residues determines the substrate specificity of isomaltase from Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 112(6), 545–550. https://doi.org/10.1016/j.jbiosc.2011.08.016
  • Zanger, U. M., & Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138(1), 103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.