725
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and molecular dynamics simulation approaches for evaluation of laccase-mediated biodegradation of various industrial dyes

, , , , , , ORCID Icon & ORCID Icon show all
Pages 12461-12471 | Received 21 May 2021, Accepted 17 Aug 2021, Published online: 30 Aug 2021

References

  • Adams, M. A., Luo, Y., Hove-Jensen, B., He, S. M., van Staalduinen, L. M., Zechel, D. L., & Jia, Z. (2008). Crystal structure of PhnH: An essential component of carbon-phosphorus lyase in Escherichia coli. Journal of Bacteriology, 190(3), 1072–1083. https://doi.org/10.1128/JB.01274-07
  • Ahlawat, S., Singh, D., Virdi, J. S., & Sharma, K. K. (2019). Molecular modeling and MD-simulation studies: Fast and reliable tool to study the role of low-redox bacterial laccases in the decolorization of various commercial dyes. Environmental Pollution (Barking, Essex: 1987), 253, 1056–1065. https://doi.org/10.1016/j.envpol.2019.07.083
  • Albahnasawi, A., Yüksel, E., Gürbulak, E., & Duyum, F. (2020). Fate of aromatic amines through decolorization of real textile wastewater under anoxic-aerobic membrane bioreactor. Journal of Environmental Chemical Engineering, 8(5), 104226. https://doi.org/10.1016/j.jece.2020.104226
  • Benkhaya, S., M' Rabet, S., & El Harfi, A. (2020a). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. https://doi.org/10.1016/j.inoche.2020.107891
  • Bhatia, S. C., & Devraj, S. (2017). Pollution control in textile industry. WPI Publishing.
  • Bhatt, P., Joshi, T., Bhatt, K., Zhang, W., Huang, Y., & Chen, S. (2021). Binding interaction of glyphosate with glyphosate oxidoreductase and C-P lyase: Molecular docking and molecular dynamics simulation studies. Journal of Hazardous Materials, 409, 124927. https://doi.org/10.1016/j.jhazmat.2020.124927
  • Bhatt, K., & Maheshwari, D. K. (2020). Insights into zinc-sensing metalloregulator ‘Zur’ deciphering mechanism of zinc transportation in Bacillus spp. by modeling, simulation and molecular docking. Journal of Biomolecular Structure and Dynamics, 1–16.
  • Chandra Pandey, S., Dhami, D. S., Jha, A., Chandra Shah, G., Kumar, A., & Samant, M. (2019). Identification of trans-2-cis-8-Matricaria-ester from the essential oil of Erigeron multiradiatus and evaluation of its antileishmanial potential by in vitro and in silico approaches. ACS Omega, 4(11), 14640–14649. https://doi.org/10.1021/acsomega.9b02130
  • Chen, M., Zeng, G., Lai, C., Zhang, C., Xu, P., Yan, M., & Xiong, W. (2017). Interactions of carbon nanotubes and/or graphene with manganese peroxidase during biodegradation of endocrine disruptors and triclosan. Chemosphere, 184, 127–136. https://doi.org/10.1016/j.chemosphere.2017.05.162
  • Chivukula, M., & Renganathan, V. (1995). Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Applied and Environmental Microbiology, 61(12), 4374–4377. https://doi.org/10.1128/aem.61.12.4374-4377.1995
  • Gupta, V. K. (2019). Fundamentals of natural dyes and its application on textile substrates. In Chemistry and technology of natural and synthetic dyes and pigments. IntechOpen.
  • Gürses, A., Açıkyıldız, M., Güneş, K., & &Gürses, M. S. (2016). Classification of dye and pigments. In Dyes and pigments (pp. 31–45). Springer.
  • IARC (1972). Monographs on the evaluation of the carcinogenic risk of chemicals to humans (pp. V4 62). Geneva: World Health Organization, International Agency for Research on Cancer, (http://monographs.iarc.fr/ENG/Classification/index.php),
  • Jia, B., Jia, X., Kim, K. H., Pu, Z. J., Kang, M. S., & Jeon, C. O. (2017). Evolutionary, computational, and biochemical studies of the salicylaldehyde dehydrogenases in the naphthalene degradation pathway. Scientific Reports, 7(1), 1–13.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Joshi, T., Joshi, T., Sharma, P., Chandra, S., & Pande, V. (2020). Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonasoryzaepv. Oryzae by targeting peptide deformylase. Journal of Biomolecular Structure and Dynamics, 39(3), 1–18.
  • Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 805187. https://doi.org/10.4061/2011/805187
  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Ledakowicz, S., & Paździor, K. (2021). Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules (Basel, Switzerland), 26(4), 870. https://doi.org/10.3390/molecules26040870
  • Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001
  • Li, X., & Zheng, Y. (2017). Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 35(4), 466–489. https://doi.org/10.1016/j.biotechadv.2017.03.010
  • Liu, Y., Liu, Z., Zeng, G., Chen, M., Jiang, Y., Shao, B., Li, Z., & Liu, Y. (2018). Effect of surfactants on the interaction of phenol with laccase: Molecular docking and molecular dynamics simulation studies. Journal of Hazardous Materials, 357, 10–18. https://doi.org/10.1016/j.jhazmat.2018.05.042
  • Maguire, J. B., Boyken, S. E., Baker, D., & Kuhlman, B. (2018). Rapid sampling of hydrogen bond networks for computational protein design. Journal of Chemical Theory and Computation, 14(5), 2751–2760. https://doi.org/10.1021/acs.jctc.8b00033
  • Mathews, S. L., Smithson, C. E., & Grunden, A. M. (2016). Purification and characterization of a recombinant laccase‐like multi‐copper oxidase from Paenibacillus glucanolyticus SLM 1. Journal of Applied Microbiology, 121(5), 1335–1345. https://doi.org/10.1111/jam.13241
  • Møller, P., & Wallin, H. (2000). Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutation Research/Reviews in Mutation Research, 462(1), 13–30. https://doi.org/10.1016/S1383-5742(99)00090-3
  • Muslem, W. H., Edbeib, M. F., Aksoy, H. M., Kaya, Y., Hamid, A. A. A., Hood, M. H. M., Wahab, R. A., & Huyop, F. (2020). Biodegradation of 3-chloropropionic acid (3-CP) by Bacillus cereus WH2 and its in silico enzyme-substrate docking analysis. Journal of Biomolecular Structure & Dynamics, 38(11), 3432–3441. https://doi.org/10.1080/07391102.2019.1655482
  • National Toxicology Program (1992). Toxicology and carcinogenesis studies of CI pigment Red 23 (CAS No. 6471-49-4) in F344 rats and B6C3F1 mice (feed studies). National Toxicology Program Technical Report Series, 411, 1–283.
  • Ogola, H. J. O., Ashida, H., Ishikawa, T., & Sawa, Y. (2015). Explorations and applications of enzyme-linked bioremediation of synthetic dyes. Advances in Bioremediation of Wastewater and Polluted Soil, 111–144.
  • Pande, V., Pandey, S. C., Joshi, T., Sati, D., Gangola, S., Kumar, S., & Samant, M. (2019). Biodegradation of toxic dyes: A comparative study of enzyme action in a microbial system. In Smart Bioremediation Technologies (pp. 255–287). Academic Press.
  • Pande, V., Pandey, S. C., Sati, D., Pande, V., & Samant, M. (2020). Bioremediation: An emerging effective approach towards environment restoration. Environmental Sustainability, 3(1), 91–103. https://doi.org/10.1007/s42398-020-00099-w
  • Pandey, S. C., Jha, A., Kumar, A., & Samant, M. (2019). Evaluation of antileishmanial potential of computationally screened compounds targeting DEAD-box RNA helicase of Leishmaniadonovani. International Journal of Biological Macromolecules, 121, 480–487. https://doi.org/10.1016/j.ijbiomac.2018.10.053
  • Paramo, T., East, A., Garzón, D., Ulmschneider, M. B., & Bond, P. J. (2014). Efficient characterization of protein cavities within molecular simulation trajectories: Trj_cavity. Journal of Chemical Theory and Computation, 10(5), 2151–2164. https://doi.org/10.1021/ct401098b
  • Pramanik, S., & Chaudhuri, S. (2018). Laccase activity and azo dye decolorization potential of Podoscypha elegans. Mycobiology, 46(1), 79–83. https://doi.org/10.1080/12298093.2018.1454006
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Sarkar, S., Banerjee, A., Halder, U., Biswas, R., & Bandopadhyay, R. (2017). Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes. Water Conservation Science and Engineering, 2(4), 121–131. https://doi.org/10.1007/s41101-017-0031-5
  • Singh, D., Sharma, K. K., Jacob, S., & Gakhar, S. K. (2014). Molecular docking of laccase protein from Bacillus safensis DSKK5 isolated from earthworm gut: A novel method to study dye decolorization potential. Water, Air, & Soil Pollution, 225(11), 1–12.
  • Sridhar, S., Chinnathambi, V., Arumugam, P., & Suresh, P. K. (2013). In Silico and in Vitro Physicochemical Screening of Rigidoporus sp. Crude Laccase-assisted Decolorization of Synthetic dyes-approaches for a cost-effective enzyme-based remediation methodology . Applied Biochemistry and Biotechnology, 169(3), 911–922. https://doi.org/10.1007/s12010-012-0041-x
  • Srinivasan, S., Sadasivam, S. K., Gunalan, S., Shanmugam, G., & Kothandan, G. (2019). Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Environmental Pollution (Barking, Essex : 1987), 248, 599–608. https://doi.org/10.1016/j.envpol.2019.02.080
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Trott, O., & Olson, A. J. (2010). AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K. H., Rai, B. N., & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367. https://doi.org/10.1016/j.biortech.2018.01.029
  • Zhao, J., Wu, Q. X., Cheng, X. D., Su, T., Wang, X. H., Zhang, W. N., Lu, Y. M., & Chen, Y. (2021). Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus. Frontiers of Chemical Science and Engineering, 15(2), 421–436. https://doi.org/10.1007/s11705-020-1952-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.