254
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Complete reconstruction of dasatinib unbinding pathway from c-Src kinase by supervised molecular dynamics simulation method; assessing efficiency and trustworthiness of the method

, , & ORCID Icon
Pages 12535-12545 | Received 10 May 2021, Accepted 21 Aug 2021, Published online: 02 Sep 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Anderson, A. C. (2003). The process of structure-based drug design. Chemistry & Biology, 10(9), 787–797. https://doi.org/10.1016/j.chembiol.2003.09.002
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bernetti, M., Masetti, M., Recanatini, M., Amaro, R. E., & Cavalli, A. (2019). An integrated Markov state model and path metadynamics approach to characterize drug binding processes. Journal of Chemical Theory and Computation, 15(10), 5689–5702. https://doi.org/10.1021/acs.jctc.9b00450
  • Blundell, T. L. (1996). Structure-based drug design. Nature, 384(6604 Suppl), 23–26. https://doi.org/10.1038/384023a0.
  • Bruno, A., Barresi, E., Simola, N., Da Pozzo, E., Costa, B., Novellino, E., Da Settimo, F., Martini, C., Taliani, S., & Cosconati, S. (2019). Unbinding of translocator protein 18 kDa (TSPO) ligands: From in vitro residence time to in vivo efficacy via in silico simulations. ACS Chemical Neuroscience, 10(8), 3805–3814. https://doi.org/10.1021/acschemneuro.9b00300
  • Buch, I., Giorgino, T., & De Fabritiis, G. (2011). Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10184–10189. https://doi.org/10.1073/pnas.1103547108
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Capelli, R., Carloni, P., & Parrinello, M. (2019). Exhaustive search of ligand binding pathways via volume-based metadynamics. The Journal of Physical Chemistry Letters, 10(12), 3495–3499. https://doi.org/10.1021/acs.jpclett.9b01183
  • Capelli, R., Lyu, W., Bolnykh, V., Meloni, S., Olsen, J. M. H., Rothlisberger, U., Parrinello, M., & Carloni, P. (2020). Accuracy of molecular simulation-based predictions of Koff values: A metadynamics study. The Journal of Physical Chemistry Letters, 11(15), 6373–6381. https://doi.org/10.1021/acs.jpclett.0c00999
  • Casasnovas, R., Limongelli, V., Tiwary, P., Carloni, P., & Parrinello, M. (2017). Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics simulations. Journal of the American Chemical Society, 139(13), 4780–4788. https://doi.org/10.1021/jacs.6b12950
  • Dandekar, B. R., & Mondal, J. (2020). Capturing protein-ligand recognition pathways in coarse-grained simulation. The Journal of Physical Chemistry Letters, 11(13), 5302–5311. https://doi.org/10.1021/acs.jpclett.0c01683
  • D’Annessa, I., Raniolo, S., Limongelli, V., Di Marino, D., & Colombo, G. (2019). Ligand binding, unbinding, and allosteric effects: Deciphering small-molecule modulation of HSP90. Journal of Chemical Theory and Computation, 15(11), 6368–6381. https://doi.org/10.1021/acs.jctc.9b00319
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Deganutti, G., Moro, S., & Reynolds, C. A. (2020). A supervised molecular dynamics approach to unbiased ligand-protein unbinding. Journal of Chemical Information and Modeling, 60(3), 1804–1817. https://doi.org/10.1021/acs.jcim.9b01094
  • Deganutti, G., Welihinda, A., & Moro, S. (2017). Comparison of the human A2A adenosine receptor recognition by adenosine and inosine: New insight from supervised molecular dynamics simulations. ChemMedChem., 12(16), 1319–1326. https://doi.org/10.1002/cmdc.201700200
  • Dodda, L. S., Tirado-Rives, J., & Jorgensen, W. L. (2019). Unbinding dynamics of non-nucleoside inhibitors from HIV-1 reverse transcriptase. The Journal of Physical Chemistry B, 123(8), 1741–1748. https://doi.org/10.1021/acs.jpcb.8b10341
  • Dror, R. O., Pan, A. C., Arlow, D. H., Borhani, D. W., Maragakis, P., Shan, Y., Xu, H., & Shaw, D. E. (2011). Pathway and mechanism of drug binding to G-protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13118–13123. https://doi.org/10.1073/pnas.1104614108
  • Fischer, A., & Smieško, M. (2019). Spontaneous ligand access events to membrane-bound cytochrome P450 2D6 sampled at atomic resolution. Scientific Reports, 9(1), 16411. https://doi.org/10.1038/s41598-019-52681-w
  • Gane, P. J., & Dean, P. M. (2000). Recent advances in structure-based rational drug design. Current opinion in Structural Biology, 10(4), 401–404. https://doi.org/10.1016/s0959-440x(00)00105-6
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Getlik, M., Grütter, C., Simard, J. R., Klüter, S., Rabiller, M., Rode, H. B., Robubi, A., & Rauh, D. (2009). Hybrid compound design to overcome the gatekeeper T338M mutation in cSrc. Journal of Medicinal Chemistry, 52(13), 3915–3926. https://doi.org/10.1021/jm9002928
  • Gohlke, H., Hergert, U., Meyer, T., Mulnaes, D., Grieshaber, M. K., Smits, S. H. J., & Schmitt, L. (2013). Binding region of alanopine dehydrogenase predicted by unbiased molecular dynamics simulations of ligand diffusion. Journal of Chemical Information and Modeling, 53(10), 2493–2498. https://doi.org/10.1021/ci400370y
  • Greer, J., Erickson, J. W., Baldwin, J. J., & Varney, M. D. (1994). Application of the three-dimensional structures of protein target molecules in structure-based drug design. Journal of Medicinal Chemistry, 37(8), 1035–1054. https://doi.org/10.1021/jm00034a001
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kalyaanamoorthy, S., & Chen, Y.-P P. (2011). Structure-based drug design to augment hit discovery. Drug Discovery Today, 16(17–18), 831–839. https://doi.org/10.1016/j.drudis.2011.07.006
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Klebe, G. (2000). Recent developments in structure-based drug design. Journal of Molecular Medicine (Berlin, Germany), 78(5), 269–281. https://doi.org/10.1007/s001090000084
  • Kraus, D. (2014). Consolidated data analysis and presentation using an open-source add-in for the Microsoft Excel® spreadsheet software. Medical Writing, 23(1), 25–28. https://doi.org/10.1179/2047480613Z.000000000181
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lotz, S. D., & Dickson, A. (2018). Unbiased molecular dynamics of 11 min timescale drug unbinding reveals transition state stabilizing interactions. Journal of the American Chemical Society, 140(2), 618–628. https://doi.org/10.1021/jacs.7b08572
  • Lüdemann, S. K., Carugo, O., & Wade, R. C. (1997). Substrate access to cytochrome P450cam: A comparison of a thermal motion pathway analysis with molecular dynamics simulation data. Journal of Molecular Modeling, 3(8), 369–374. https://doi.org/10.1007/s008940050053
  • Lüdemann, S. K., Lounnas, V., & Wade, R. C. (2000). How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms11Edited by J. Thornton. Journal of Molecular Biology, 303(5), 797–811. https://doi.org/10.1006/jmbi.2000.4154
  • Mandal, S., Moudgil, M. n., & Mandal, S. K. (2009). Rational drug design. European Journal of Pharmacology, 625(1–3), 90–100. https://doi.org/10.1016/j.ejphar.2009.06.065
  • Mollica, L., Decherchi, S., Zia, S. R., Gaspari, R., Cavalli, A., & Rocchia, W. (2015). Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Scientific Reports, 5, 11539. https://doi.org/10.1038/srep11539
  • Morando, M. A., Saladino, G., D'Amelio, N., Pucheta-Martinez, E., Lovera, S., Lelli, M., López-Méndez, B., Marenchino, M., Campos-Olivas, R., & Gervasio, F. L. (2016). Conformational selection and induced fit mechanisms in the binding of an anticancer drug to the c-Src kinase. Scientific Reports, 6(1), 24439. https://doi.org/10.1038/srep24439
  • Niitsu, A., Re, S., Oshima, H., Kamiya, M., & Sugita, Y. (2019). De novo prediction of binders and nonbinders for T4 lysozyme by gREST simulations. Journal of Chemical Information and Modeling, 59(9), 3879–3888. https://doi.org/10.1021/acs.jcim.9b00416
  • Niu, Y., Li, S., Pan, D., Liu, H., & Yao, X. (2016). Computational study on the unbinding pathways of B-RAF inhibitors and its implication for the difference of residence time: Insight from random acceleration and steered molecular dynamics simulations. Physical Chemistry Chemical Physics : PCCP, 18(7), 5622–5629. https://doi.org/10.1039/C5CP06257H
  • Núñez, S., Venhorst, J., & Kruse, C. G. (2012). Target-drug interactions: First principles and their application to drug discovery. Drug Discovery Today, 17(1-2), 10–22. https://doi.org/10.1016/j.drudis.2011.06.013
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Piana, S., & Laio, A. (2007). A bias-exchange approach to protein folding. The Journal of Physical Chemistry B, 111(17), 4553–4559. https://doi.org/10.1021/jp067873l
  • Pietrucci, F., Marinelli, F., Carloni, P., & Laio, A. (2009). Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations. Journal of the American Chemical Society, 131(33), 11811–11818. https://doi.org/10.1021/ja903045y
  • Pramanik, D., Smith, Z., Kells, A., & Tiwary, P. (2019). Can one trust kinetic and thermodynamic observables from biased metadynamics simulations?: Detailed quantitative benchmarks on millimolar drug fragment dissociation. The Journal of Physical Chemistry B, 123(17), 3672–3678. https://doi.org/10.1021/acs.jpcb.9b01813
  • Pucheta-Martínez, E., Saladino, G., Morando, M. A., Martinez-Torrecuadrada, J., Lelli, M., Sutto, L., D'Amelio, N., & Gervasio, F. L. (2016). An allosteric cross-talk between the activation loop and the ATP binding site regulates the activation of Src kinase. Scientific Reports, 6, 24235. https://doi.org/10.1038/srep24235
  • Rydzewski, J., Jakubowski, R., Nowak, W., & Grubmüller, H. (2018). Kinetics of huperzine A dissociation from acetylcholinesterase via multiple unbinding pathways. Journal of Chemical Theory and Computation, 14(6), 2843–2851. https://doi.org/10.1021/acs.jctc.8b00173
  • Sabbadin, D., & Moro, S. (2014). Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale. Journal of Chemical Information and Modeling, 54(2), 372–376. https://doi.org/10.1021/ci400766b
  • Sabbadin, D., Salmaso, V., Sturlese, M., & Moro, S. (2018). Supervised molecular dynamics (SuMD) approaches in drug design. Methods in Molecular Biology (Clifton, NJ), 1824, 287–298. https://doi.org/10.1007/978-1-4939-8630-9_17
  • Schuetz, D. A., Bernetti, M., Bertazzo, M., Musil, D., Eggenweiler, H.-M., Recanatini, M., Masetti, M., Ecker, G. F., & Cavalli, A. (2019). Predicting residence time and drug unbinding pathway through scaled molecular dynamics. Journal of Chemical Information and Modeling, 59(1), 535–549. https://doi.org/10.1021/acs.jcim.8b00614
  • Shan, Y., Kim, E. T., Eastwood, M. P., Dror, R. O., Seeliger, M. A., & Shaw, D. E. (2011). How does a drug molecule find its target binding site? Journal of the American Chemical Society, 133(24), 9181–9183. https://doi.org/10.1021/ja202726y
  • Shao, Q., & Zhu, W. (2019). Exploring the ligand binding/unbinding pathway by selectively enhanced sampling of ligand in a protein-ligand complex. The Journal of Physical Chemistry B, 123(38), 7974–7983. https://doi.org/10.1021/acs.jpcb.9b05226
  • Shukla, D., Meng, Y., Roux, B., & Pande, V. S. (2014). Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nature Communications, 5, 3397. https://doi.org/10.1038/ncomms4397
  • Śledź, P., & Caflisch, A. (2018). Protein structure-based drug design: From docking to molecular dynamics. Current Opinion in Structural Biology, 48, 93–102. https://doi.org/10.1016/j.sbi.2017.10.010
  • Sohraby, F., & Aryapour, H. (2021). Rational drug repurposing for cancer by inclusion of the unbiased molecular dynamics simulation in the structure-based virtual screening approach: Challenges and breakthroughs. Seminars in Cancer Biology, 68, 249–257. https://doi.org/10.1016/j.semcancer.2020.04.007
  • Sohraby, F., Javaheri Moghadam, M., Aliyar, M., & Aryapour, H. (2020). A boosted unbiased molecular dynamics method for predicting ligands binding mechanisms: Probing the binding pathway of dasatinib to Src-kinase. Bioinformatics (Oxford, England), 36(18), 4714–4720. https://doi.org/10.1093/bioinformatics/btaa565
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367
  • Souza, P. C. T., Thallmair, S., Conflitti, P., Ramírez-Palacios, C., Alessandri, R., Raniolo, S., Limongelli, V., & Marrink, S. J. (2020). Protein-ligand binding with the coarse-grained Martini model. Nature Communications, 11(1), 3714. https://doi.org/10.1038/s41467-020-17437-5
  • Tang, Z., & Chang, C-e A. (2018). Binding thermodynamics and kinetics calculations using chemical host and guest: A comprehensive picture of molecular recognition. Journal of Chemical Theory and Computation, 14(1), 303–318. https://doi.org/10.1021/acs.jctc.7b00899
  • Tiwary, P., Mondal, J., & Berne, B. J. (2017). How and when does an anticancer drug leave its binding site? Science Advances, 3(5), e1700014. https://doi.org/10.1126/sciadv.1700014
  • Tiwary, P., Limongelli, V., Salvalaglio, M., & Parrinello, M. (2015). Kinetics of protein-ligand unbinding: Predicting pathways, rates, and rate-limiting steps. Proceedings of the National Academy of Sciences of the United States of America, 112(5), E386–391. https://doi.org/10.1073/pnas.1424461112
  • Vandyke, K., Fitter, S., & Zannettino, A. C. W. (2011). The tyrosine kinase inhibitor dasatinib (SPRYCEL) inhibits chondrocyte activity and proliferation. Blood Cancer Journal, 1(2), e2. https://doi.org/10.1038/bcj.2011.1
  • Verlinde, C. L. M. J., & Hol, W. G. J. (1994). Structure-based drug design: Progress, results and challenges. Structure (London, England: 1993), 2(7), 577–587. https://doi.org/10.1016/s0969-2126(00)00060-5
  • Zeller, F., Luitz, M. P., Bomblies, R., & Zacharias, M. (2017). Multiscale simulation of receptor-drug association kinetics: Application to neuraminidase inhibitors. Journal of Chemical Theory and Computation, 13(10), 5097–5105. https://doi.org/10.1021/acs.jctc.7b00631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.