269
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural effects of HIV-1 subtype C integrase mutations on the activity of integrase strand transfer inhibitors in South African patients

&
Pages 12546-12556 | Received 23 Feb 2021, Accepted 21 Aug 2021, Published online: 06 Sep 2021

References

  • Abram, M. E., Hluhanich, R. M., Goodman, D. D., Andreatta, K. N., Margot, N. A., Ye, L., Niedziela-Majka, A., Barnes, T. L., Novikov, N., Chen, X., Svarovskaia, E. S., McColl, D. J., White, K. L., & Miller, M. D. (2013). Impact of primary elvitegravir resistance-associated mutations in HIV-1 integrase on drug susceptibility and viral replication fitness. Antimicrobial Agents and Chemotherapy, 57(6), 2654–2663. https://doi.org/10.1128/AAC.02568-12
  • Ahmed, N., Flavell, S., Ferns, B., Frampton, D., Edwards, S. G., Miller, R. F., Grant, P., Nastouli, E., & Gupta, R. K. (2019). Development of the R263K mutation to dolutegravir in an HIV-1 subtype D virus harboring 3 class-drug resistance. Open Forum Infectious Diseases, 6(1), ofy329. https://doi.org/10.1093/ofid/ofy329
  • Ali, S. A., Hassan, M. I., Islam, A., & Ahmad, F. (2014). A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Current Protein & Peptide Science, 15(5), 456–476. https://doi.org/10.2174/1389203715666140327114232
  • Allen, B., Nisthal, A., & Mayo, S. L. (2010). Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 19838–19843. https://doi.org/10.1073/pnas.1012985107
  • Anstett, K., Cutillas, V., Fusco, R., Mesplède, T., & Wainberg, M. A. (2016). Polymorphic substitution E157Q in HIV-1 integrase increases R263K-mediated dolutegravir resistance and decreases DNA binding activity. The Journal of Antimicrobial Chemotherapy, 71(8), 2083–2088. https://doi.org/10.1093/jac/dkw109
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bessong, P., & Nwobegahay, J. (2013). Genetic analysis of HIV-1 integrase sequences from treatment naive individuals in northeastern South Africa. International Journal of Molecular Sciences, 14(3), 5013–5024. https://doi.org/10.3390/ijms14035013
  • Bienert, S., Waterhouse, A., de Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL repository-new features and functionality. Nucleic Acids Research, 45(D1), D313–D319. https://doi.org/10.1093/nar/gkw1132
  • Blanco, J.-L., Varghese, V., Rhee, S.-Y., Gatell, J. M., & Shafer, R. W. (2011). HIV-1 integrase inhibitor resistance and its clinical implications. The Journal of Infectious Diseases, 203(9), 1204–1214. https://doi.org/10.1093/infdis/jir025
  • Brado, D., Obasa, A. E., Ikomey, G. M., Cloete, R., Singh, K., Engelbrecht, S., Neogi, U., & Jacobs, G. B. (2018). Analyses of HIV-1 integrase sequences prior to South African national HIV-treatment program and available of integrase inhibitors in Cape Town, South Africa. Scientific Reports, 8(1), 4709–4709. https://doi.org/10.1038/s41598-018-22914-5
  • Case, D. A. (2018). AMBER 2018 manual.
  • Ceccherini-Silberstein, F., Van Baelen, K., Armenia, D., Trignetti, M., Rondelez, E., Fabeni, L., Scopelliti, F., Pollicita, M., Van Wesenbeeck, L., Van Eygen, V., Dori, L., Sarmati, L., Aquaro, S., Palamara, G., Andreoni, M., Stuyver, L. J., & Perno, C. F. (2010). Secondary integrase resistance mutations found in HIV-1 minority quasispecies in integrase therapy-naive patients have little or no effect on susceptibility to integrase inhibitors. Antimicrobial Agents and Chemotherapy, 54(9), 3938–3948. https://doi.org/10.1128/AAC.01720-09
  • de Carvalho, L. L., Maltarollo, V. G., de Lima, E. F., Weber, K. C., Honorio, K. M., & da Silva, A. B. F. (2014). Molecular features related to HIV integrase inhibition obtained from structure- and ligand-based approaches. PLoS One, 9(1), e81301. https://doi.org/10.1371/journal.pone.0081301
  • Dixit, S. B., Ponomarev, S. Y., & Beveridge, D. L. (2006). Root mean square deviation probability analysis of molecular dynamics trajectories on DNA. Journal of Chemical Information and Modeling, 46(3), 1084–1093. https://doi.org/10.1021/ci0504925
  • Durham, S. H., & Chahine, E. B. (2021). Cabotegravir-rilpivirine: The first complete long-acting injectable regimen for the treatment of HIV-1 infection. Annals of Pharmacotherapy, 1060028021995586.
  • Engelman, A. N. (2019). Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. The Journal of Biological Chemistry, 294(41), 15137–15157. https://doi.org/10.1074/jbc.REV119.006901
  • Eurtivong, C., Choowongkomon, K., Ploypradith, P., & Ruchirawat, S. (2019). Molecular docking study of lamellarin analogues and identification of potential inhibitors of HIV-1 integrase strand transfer complex by virtual screening. Heliyon, 5(11), e02811. https://doi.org/10.1016/j.heliyon.2019.e02811
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Goethals, O., Clayton, R., Van Ginderen, M., Vereycken, I., Wagemans, E., Geluykens, P., Dockx, K., Strijbos, R., Smits, V., Vos, A., Meersseman, G., Jochmans, D., Vermeire, K., Schols, D., Hallenberger, S., & Hertogs, K. (2008). Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. Journal of Virology, 82(21), 10366–10374. https://doi.org/10.1128/JVI.00470-08
  • Graham, M. J., Drake, A. J., Djorgovski, S. G., Mahabal, A. A., & Donalek, C. (2013). Using conditional entropy to identify periodicity. Monthly Notices of the Royal Astronomical Society, 434(3), 2629–2635. https://doi.org/10.1093/mnras/stt1206
  • Greenwald, J., Le, V., Butler, S. L., Bushman, F. D., & Choe, S. (1999). The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry, 38(28), 8892–8898. https://doi.org/10.1021/bi9907173
  • Hachiya, A., Ode, H., Matsuda, M., Kito, Y., Shigemi, U., Matsuoka, K., Imamura, J., Yokomaku, Y., Iwatani, Y., & Sugiura, W. (2015). Natural polymorphism S119R of HIV-1 integrase enhances primary INSTI resistance. Antiviral Research, 119, 84–88. https://doi.org/10.1016/j.antiviral.2015.04.014
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Harper, A. L., Skinner, L. M., Sudol, M., & Katzman, M. (2001). Use of patient-derived human immunodeficiency virus type 1 integrases to identify a protein residue that affects target site selection. Journal of Virology, 75(16), 7756–7762. https://doi.org/10.1128/JVI.75.16.7756-7762.2001
  • Harper, A. L., Sudol, M., & Katzman, M. (2003). An amino acid in the central catalytic domain of three retroviral integrases that affects target site selection in nonviral DNA. Journal of Virology, 77(6), 3838–3845. https://doi.org/10.1128/jvi.77.6.3838-3845.2003
  • Hayes, J. M., & Archontis, G. (2012). MM-GB (PB) SA calculations of protein-ligand binding free energies. Molecular Dynamics-Studies of Synthetic and Biological Macromolecules, 171–190. ISBN 978-953-51-0444-5.
  • Hazuda, D. J. (2009). Resistance to inhibitors of human immunodeficiency virus type I integration, in antimicrobial drug resistance (pp. 507–517). Springer.
  • Hazuda, D., Nguyen, B. M., & Zhao, J., for the P005 Study team. (2007). Resistance to the HIV-integrase inhibitor raltegravir: analysis of protocol 005, a Phase II study in patients with triple-class resistance HIV-infection. XVI International HIV Drug Resistance Workshop: Basic Principles and Clinical implications.
  • Hurt, C. B., Sebastian, J., Hicks, C. B., & Eron, J. J. (2014). Resistance to HIV integrase strand transfer inhibitors among clinical specimens in the United States, 2009–2012. Clinical Infectious Diseases, 58(3), 423–431. https://doi.org/10.1093/cid/cit697
  • Isaacs, D. (2020). Structural comparison of diverse HIV-1 subtypes using molecular modelling and docking analyses of Integrase inhibitors. Viruses, 12(9), 936. https://doi.org/10.3390/v12090936
  • Karimipour, A., Amini, A., Nouri, M., D'Orazio, A., Sabetvand, R., Hekmatifar, M., Marjani, A., & Bach, Q.-V. (2021). Molecular dynamics performance for coronavirus simulation by C, N, O, and S atoms implementation dreiding force field: Drug delivery atomic interaction in contact with metallic Fe, Al, and steel. Computational Particle Mechanics, 8, 737-749. https://doi.org/10.1007/s40571-020-00367-w
  • Malet, I., Delelis, O., Valantin, M.-A., Montes, B., Soulie, C., Wirden, M., Tchertanov, L., Peytavin, G., Reynes, J., Mouscadet, J.-F., Katlama, C., Calvez, V., & Marcelin, A.-G. (2008). Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrobial Agents and Chemotherapy, 52(4), 1351–1358. https://doi.org/10.1128/AAC.01228-07
  • Malet, I., Gimferrer Arriaga, L., Artese, A., Costa, G., Parrotta, L., Alcaro, S., Delelis, O., Tmeizeh, A., Katlama, C., Valantin, M.-A., Ceccherini-Silberstein, F., Calvez, V., & Marcelin, A.-G. (2014). New raltegravir resistance pathways induce broad cross-resistance to all currently used integrase inhibitors. The Journal of Antimicrobial Chemotherapy, 69(8), 2118–2122. https://doi.org/10.1093/jac/dku095
  • Marchand, C., Zhang, X., Pais, G. C. G., Cowansage, K., Neamati, N., Burke, T. R., & Pommier, Y. (2002). Structural determinants for HIV-1 integrase inhibition by beta-diketo acids. The Journal of Biological Chemistry, 277(15), 12596–12603. https://doi.org/10.1074/jbc.M110758200
  • Martin, A. J. M., Vidotto, M., Boscariol, F., Di Domenico, T., Walsh, I., & Tosatto, S. C. E. (2011). RING: Networking interacting residues, evolutionary information and energetics in protein structures. Bioinformatics (Oxford, England), 27(14), 2003–2005. https://doi.org/10.1093/bioinformatics/btr191
  • Mayo, S. L., Olafson, B. D., & Goddard, W. A. (1990). DREIDING: A generic force field for molecular simulations. The Journal of Physical Chemistry, 94(26), 8897–8909. https://doi.org/10.1021/j100389a010
  • McColl, D. J., & Chen, X. (2010). Strand transfer inhibitors of HIV-1 integrase: Bringing IN a new era of antiretroviral therapy. Antiviral Research, 85(1), 101–118. https://doi.org/10.1016/j.antiviral.2009.11.004
  • Métifiot, M., Maddali, K., Naumova, A., Zhang, X., Marchand, C., & Pommier, Y. (2010). Biochemical and pharmacological analyses of HIV-1 integrase flexible loop mutants resistant to raltegravir. Biochemistry, 49(17), 3715–3722. https://doi.org/10.1021/bi100130f
  • Moorhouse, M. A. (2018). Southern African HIV Clinicians Society guidance on the use of dolutegravir in first-line antiretroviral therapy. Southern African Journal of HIV Medicine,19(1), 1–2.
  • Oliveira, M., Mesplède, T., Quashie, P. K., Moïsi, D., & Wainberg, M. A. (2014). Resistance mutations against dolutegravir in HIV integrase impair the emergence of resistance against reverse transcriptase inhibitors. AIDS (London, England), 28(6), 813–819. https://doi.org/10.1097/QAD.0000000000000199
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science: A Publication of the Protein Society, 23(5), 652–661. https://doi.org/10.1002/pro.2449
  • Passos, D. O., Li, M., Yang, R., Rebensburg, S. V., Ghirlando, R., Jeon, Y., Shkriabai, N., Kvaratskhelia, M., Craigie, R., & Lyumkis, D. (2017). Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science (New York, N.Y.), 355(6320), 89–92. https://doi.org/10.1126/science.aah5163
  • Perryman, A. L., Forli, S., Morris, G. M., Burt, C., Cheng, Y., Palmer, M. J., Whitby, K., McCammon, J. A., Phillips, C., & Olson, A. J. (2010). A dynamic model of HIV integrase inhibition and drug resistance. Journal of Molecular Biology, 397(2), 600–615. https://doi.org/10.1016/j.jmb.2010.01.033
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Quashie, P. K., Han, Y.-S., Hassounah, S., Mesplède, T., & Wainberg, M. A. (2015). Structural studies of the HIV-1 integrase protein: Compound screening and characterization of a DNA-binding inhibitor. PLoS One, 10(6), e0128310. https://doi.org/10.1371/journal.pone.0128310
  • Quashie, P. K., Mesplède, T., & Wainberg, M. A. (2013). Evolution of HIV integrase resistance mutations. Current Opinion in Infectious Diseases, 26(1), 43–49. https://doi.org/10.1097/QCO.0b013e32835ba81c
  • Rastelli, G., Del Rio, A., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry, 31(4), 797–810. https://doi.org/10.1002/jcc.21372
  • Sachithanandham, J., Konda Reddy, K., Solomon, K., David, S., Kumar Singh, S., Vadhini Ramalingam, V., Alexander Pulimood, S., Cherian Abraham, O., Rupali, P., Sridharan, G., & Kannangai, R. (2016). Effect of HIV-1 Subtype C integrase mutations implied using molecular modeling and docking data. Bioinformation, 12(3), 221–230. https://doi.org/10.6026/97320630012221
  • Serrao, E., Odde, S., Ramkumar, K., & Neamati, N. (2009). Raltegravir, elvitegravir, and metoogravir: The birth of "me-too" HIV-1 integrase inhibitors. Retrovirology, 6(1), 33–14. https://doi.org/10.1186/1742-4690-6-33
  • Smith, S. J., Zhao, X. Z., Passos, D. O., Pye, V. E., Cherepanov, P., Lyumkis, D., Burke, T. R., & Hughes, S. H. (2021). HIV-1 integrase inhibitors with modifications that affect their potencies against drug resistant integrase mutants. ACS Infectious Diseases, 7(6), 1469–1482. https://doi.org/10.1021/acsinfecdis.0c00819
  • Sotriffer, C. A., Ni, H., & McCammon, J. A. (2000). HIV-1 integrase inhibitor interactions at the active site: Prediction of binding modes unaffected by crystal packing. Journal of the American Chemical Society, 122(25), 6136–6137. https://doi.org/10.1021/ja001152x
  • Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., Pan, P., Zhu, F., Zhang, J. Z. H., & Hou, T. (2018). Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Physical Chemistry Chemical Physics: PCCP, 20(21), 14450–14460. https://doi.org/10.1039/c7cp07623a
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Wesenbeeck, L., Rondelez, E., Feyaerts, M., Verheyen, A., Van der Borght, K., Smits, V., Cleybergh, C., De Wolf, H., Van Baelen, K., & Stuyver, L. J. (2011). Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrobial Agents and Chemotherapy, 55(1), 321–325. https://doi.org/10.1128/AAC.01733-09
  • Vlachakis, D. (2014). Current state-of-the-art molecular dynamics methods and applications. Advances in protein chemistry and structural biology, 94, 269–313.
  • Voelker, R. (2021). Monthly injection is approved for patients with HIV. JAMA, 325(9), 816–816. https://doi.org/10.1001/jama.2021.1932
  • Wainberg, M. A., Mesplede, T., & Quashie, P. K. (2012). The development of novel HIV integrase inhibitors and the problem of drug resistance. Current Opinion in Virology, 2(5), 656–662. https://doi.org/10.1016/j.coviro.2012.08.007
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Yang, Z., Lasker, K., Schneidman-Duhovny, D., Webb, B., Huang, C. C., Pettersen, E. F., Goddard, T. D., Meng, E. C., Sali, A., & Ferrin, T. E. (2012). UCSF Chimera, MODELLER, and IMP: An integrated modeling system. Journal of Structural Biology, 179(3), 269–278. https://doi.org/10.1016/j.jsb.2011.09.006
  • Ylilauri, M., & Pentikäinen, O. T. (2013). MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. Journal of Chemical Information and Modeling, 53(10), 2626–2633. https://doi.org/10.1021/ci4002475

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.