324
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Design, synthesis and evaluation of novel β-carboline ester analogues as potential anti-leishmanial agents

ORCID Icon, ORCID Icon, , , , , , , & ORCID Icon show all
Pages 12592-12607 | Received 21 Apr 2021, Accepted 23 Aug 2021, Published online: 06 Sep 2021

References

  • Ashok, P., Chander, S., Chow, L. M. C., Wong, I. L. K., Singh, R. P., Jha, P. N., & Sankaranarayanan, M. (2017). Synthesis and in-vitro anti-leishmanial activity of (4-arylpiperazin-1-yl)(1-(thiophen-2-yl)-9H-pyrido[3,4-b]indol-3-yl)methanone derivatives. Bioorganic Chemistry, 70, 100–106. https://doi.org/10.1016/j.bioorg.2016.11.013
  • Ashok, P., Chander, S., Smith, T. K., Prakash Singh, R., Jha, P. N., & Sankaranarayanan, M. (2019). Biological evaluation and structure activity relationship of 9-methyl-1-phenyl-9H-pyrido[3,4-b]indole derivatives as anti-leishmanial agents. Bioorganic Chemistry, 84, 98–105. https://doi.org/10.1016/j.bioorg.2018.11.037
  • Ashok, P., Chander, S., Smith, T. K., & Sankaranarayanan, M. (2018). Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents Penta. European Journal of medicinal chemistry, 150, 559–566. https://doi.org/10.1016/j.ejmech.2018.03.022
  • Ashok, P., Lathiya, H., & Murugesan, S. (2015). Manzamine alkaloids as antileishmanial agents: A review. European Journal of medicinal chemistry, 97(1), 928–936. https://doi.org/10.1016/j.ejmech.2014.07.006
  • Baiocco, P., Colotti, G., Franceschini, S., & Ilari, A. (2009). Molecular basis of antimony treatment in Leishmaniasis. Journal of medicinal chemistry, 52(8), 2603–2612. https://doi.org/10.1021/jm900185q
  • Banoth, K. K., Faheem, ChandraSekhar, K. V. G., Adinarayana, N., & Murugesan, S. (2020). Recent evolution on synthesis strategies and anti-leishmanial activity of β-carboline derivatives – An update. Heliyon, 6(9), e04916. https://doi.org/10.1016/j.heliyon.2020.e04916
  • Berne, M. T., B. J. G. J. M. (1993). Reversible multiple time scale molecular dynamics. The Journal of Physical Chemistry, 97(51), 13429–13434. https://doi.org/10.1021/j100153a002
  • Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovic, V., Guzenko, D., Hudson, B. P., Kalro, T., Liang, Y., … Zardecki, C. (2019). RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 47(D1), D464–D474. https://doi.org/10.1093/nar/gky1004
  • Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. The Lancet, 392(10151), 951–970. https://doi.org/10.1016/S0140-6736(18)31204-2
  • Calvo-Álvarez, E., Stamatakis, K., Punzón, C., Álvarez-Velilla, R., Tejería, A., Escudero-Martínez, J. M., Pérez-Pertejo, Y., Fresno, M., Balaña-Fouce, R., & Reguera, R. M. (2015). Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis. PLoS Neglected Tropical Diseases, 9(3), e0003666. https://doi.org/10.1371/journal.pntd.0003666
  • Chauhan, S. S., Pandey, S., Shivahare, R., Ramalingam, K., Krishna, S., Vishwakarma, P., Siddiqi, M. I., Gupta, S., Goyal, N., & Chauhan, P. M. S. (2015). Novel β-carboline-quinazolinone hybrid as an inhibitor of Leishmania donovani trypanothione reductase: Synthesis, molecular docking and bioevaluation. MedChemComm, 6(2), 351–356. https://doi.org/10.1039/C4MD00298A
  • Cheng, A., & Merz, K. M. (1996). Application of the Nosé−Hoover chain algorithm to the study of protein dynamics. The Journal of Physical Chemistry, 100(5), 1927–1937. https://doi.org/10.1021/jp951968y
  • Dai, J., Dan, W., Schneider, U., & Wang, J. (2018). β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. European Journal of Medicinal Chemistry, 157, 622–656. https://doi.org/10.1016/j.ejmech.2018.08.027
  • Diro, E., Ritmeijer, K., Boelaert, M., Alves, F., Mohammed, R., Abongomera, C., Ravinetto, R., De Crop, M., Fikre, H., Adera, C., Colebunders, R., van Loen, H., Menten, J., Lynen, L., Hailu, A., & van Griensven, J. (2015). Use of pentamidine as secondary prophylaxis to prevent visceral leishmaniasis relapse in HIV infected patients, the first twelve months of a prospective cohort study. PLoS Neglected Tropical Diseases, 9(10), e0004087. https://doi.org/10.1371/journal.pntd.0004087
  • Dorlo, T. P. C., Balasegaram, M., Beijnen, J. H., & de Vries, P. J. (2012). Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. The Journal of antimicrobial chemotherapy, 67(11), 2576–2597. https://doi.org/10.1093/jac/dks275
  • Faheem, Kumar, B. K., Sekhar, K. V. G. C., Kunjiappan, S., Jamalis, J., Balaña-Fouce, R., & Sankaranarayanan, M. (2021). Recent update on the anti-infective potential of β-carboline analogs. Mini-Reviews in Medicinal Chemistry, 21(4), 398–425. https://doi.org/10.2174/1389557520666201001130114
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025
  • Kato, K. C., Morais-Teixeira, E., Reis, P. G., Silva-Barcellos, N. M., Salaün, P., Campos, P. P., Corrêa-Junior, J. D., Rabello, A., Demicheli, C., & Frézard, F. (2014). Hepatotoxicity of pentavalent antimonial drug: Possible role of residual Sb(III) and protective effect of ascorbic acid. Antimicrobial Agents and chemotherapy, 58(1), 481–488. https://doi.org/10.1128/AAC.01499-13
  • Khan, I., Singh, J., Kumar, V., Verma, V. P., Shukla, M., Dhasmana, A., Naruka, P. S., Goswami, A. K., Ameta, K. L., & Khan, S. (2019). A versatile pre and post ugi modification for the synthesis of natural product inspired fused peptide-carboline scaffolds as potential anti‐leishmanial agents. Chemistryselect, 4(42), 12260–12267. https://doi.org/10.1002/slct.201902441
  • Kimutai, R., Musa, A. M., Njoroge, S., Omollo, R., Alves, F., Hailu, A., Khalil, E. A. G., Diro, E., Soipei, P., Musa, B., Salman, K., Ritmeijer, K., Chappuis, F., Rashid, J., Mohammed, R., Jameneh, A., Makonnen, E., Olobo, J., Okello, L., … Wasunna, M. (2017). Safety and effectiveness of sodium stibogluconate and paromomycin combination for the treatment of visceral leishmaniasis in Eastern Africa: Results from a pharmacovigilance programme. Clinical Drug Investigation, 37(3), 259–272. https://doi.org/10.1007/s40261-016-0481-0
  • Kumar, B. K., Faheem, Sekhar, K. V. G. C., Ojha, R., Prajapati, V. K., Pai, A., & Murugesan, S. (2020). Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure and Dynamics, 0(0), 1–24. https://doi.org/10.1080/07391102.2020.1824814
  • Leishmaniasis – DNDi. (n.d.). Retrieved April 29, 2020, from https://www.dndi.org/diseases-projects/leishmaniasis/
  • Lewis, D. J. (1971). Phlebotomid sandflies. Bulletin of the World Health Organization, 44(4), 535–551.
  • Mahavidyalaya, S., Latur, D., Shaikh, S. A. L., I., & Sal, S. (2017). Synthesis and characterisation of substituted quinoline by Vilsmeier-Haack reagent. International Journal of Chemical Studies, 5(1), 1–4.
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Pérez-Pertejo, Y., Escudero-Martínez, J. M., Reguera, R. M., Balaña-Fouce, R., García, P. A., Jambrina, P. G., San Feliciano, A., & Castro, M. Á. (2019). Antileishmanial activity of terpenylquinones on Leishmania infantum and their effects on Leishmania topoisomerase IB. International Journal for Parasitology. Drugs and Drug Resistance, 11, 70–79. https://doi.org/10.1016/j.ijpddr.2019.10.004
  • Reguera, R. M., Calvo-Álvarez, E., Álvarez-Velilla, R., & Balaña-Fouce, R. (2014). Target-based vs. phenotypic screenings in Leishmania drug discovery: A marriage of convenience or a dialogue of the deaf? International Journal for Parasitology. Drugs and Drug Resistance, 4(3), 355–357. https://doi.org/10.1016/j.ijpddr.2014.05.001
  • Reguera, R. M., Pérez-Pertejo, Y., Gutiérrez-Corbo, C., Domínguez-Asenjo, B., Ordóñez, C., Garciá-Estrada, C., Martínez-Valladares, M., & Balanã-Fouce, R. (2019). Current and promising novel drug candidates against visceral leishmaniasis. Pure and Applied Chemistry, 91(8), 1385–1404. https://doi.org/10.1515/pac-2018-1102
  • Rodrigo, C., Weeratunga, P., Fernando, S. D., & Rajapakse, S. (2018). Amphotericin B for treatment of visceral leishmaniasis: Systematic review and meta-analysis of prospective comparative clinical studies including dose-ranging studies. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 24(6), 591–598. https://doi.org/10.1016/j.cmi.2017.11.008
  • Schrodinger, 2019-1. (n.d.). Schrödinger Release 2019-1: LigPrep, Schrödinger, LLC, New York, NY, 2019.
  • Schrödinger Release 2019-1: Maestro, Schrödinger, LLC, New York, NY, 2019. (n.d.).
  • Schrödinger Release 2019-1: Schrödinger Suite 2019-1 Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2019. (n.d.).
  • Schrödinger Release 2020-4: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2020. (n.d.).
  • Vanaparthi, S., Bantu, R., Jain, N., Janardhan, S., & Nagarapu, L. (2020). Synthesis and anti-proliferative activity of a novel 1,2,3-triazole tethered chalcone acetamide derivatives. Bioorganic & Medicinal Chemistry Letters, 30(16), 127304. https://doi.org/10.1016/j.bmcl.2020.127304
  • Wha, R., Assembly, W. H., States, M., States, M., & Obser, G. H. (2017). Global leishmaniasis update, 2006–2015: A turning point in leishmaniasis surveillance. Releve Epidemiologique Hebdomadaire, 92(38), 557–565. http://www.ncbi.nlm.nih.gov/pubmed/28945057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.