122
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Finding a prospective dual-target drug for the treatment of coronavirus disease by theoretical study

&
Pages 12621-12641 | Received 28 Apr 2021, Accepted 23 Aug 2021, Published online: 13 Sep 2021

References

  • Ahmed, S. A., Abdelrheem, D. A., El-Mageed, H. R. A., Mohamed, H. S., Rahman, A. A., Elsayed, K. N. M., & Ahmed, S. A. (2020). Destabilizing the structural integrity of COVID-19 by caulerpin and its derivatives along with some antiviral drugs: An in silico approaches for a combination therapy. Structural Chemistry, 31(6), 2391–2412. https://doi.org/10.1007/s11224-020-01586-w
  • Alexpandi, R., De Mesquita, J. F., Pandian, S. K., & Ravi, A. V. (2020). Quinolines-based SARS-CoV-2 CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: An in silico analysis. Frontiers in Microbiology, 23(11), 1–15.
  • Al-Karmalawy, A. A., Alnajjar, R., Dahab, M., Metwaly, A., & Eissa, I. (2021). Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease. Journal of Pharmaceutical Sciences. https://doi.org/10.34172/PS.2021.3
  • Amaro, R. E., Cheng, X., Ivanov, I., Xu, D., & McCammon, J. A. (2009). Characterizing loop dynamics and ligand recognition in human- and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations. Journal of the American Chemical Society, 131(13), 4702–4709. https://doi.org/10.1021/ja8085643
  • Artese, A., Svicher, V., Costa, G., Salpini, R., Di Maio, V. C., Alkhatib, M., Ambrosio, F. A., Santoro, M. M., Assaraf, Y. G., Alcaro, S., & Ceccherini-Silberstein, F. (2020). Current status of antivirals and drug gable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resistance Updates, 53, 100721. https://doi.org/10.1016/j.drup.2020.100721
  • Baildya, N., Ghosh, N. N., & Chattopadhyay, A. P. (2020). Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies. Journal of Molecular Structure, 1219, 128595. https://doi.org/10.1016/j.molstruc.2020.128595
  • Bauso, L. V., Imbesi, C., Irene, G., Calì, G., & Bitto, A. (2021). New approaches and repurposed antiviral drugs for the treatment of the SARS-CoV-2 infection. Pharmaceuticals, 14, 503. https://doi.org/10.3390/ph14060503
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bolcato, G., Bissaro, M., Pavan, M., Sturlese, M., & Moro, S. (2020). Targeting the coronavirus SARS-CoV-2: Computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Scientific Reports, 10(1), 20927. https://doi.org/10.1038/s41598-020-77700-z
  • Boyer, C. R., Karjian, P. L., Wahl, G. M., Pegram, M., & Neuteboom, S. T. C. (2002). Nucleoside transport inhibitors, dipyridamole and p-nitrobenzylthioinosine, selectively potentiate the antitumor activity of NB1011. Anti-Cancer Drugs, 13(1), 29–36. https://doi.org/10.1097/00001813-200201000-00003
  • Buonaguro, L., Tagliamonte, M., Tornesello, M. L., & Buonaguro, F. M. (2020). SARS-CoV-2 RNA polymerase as target for antiviral therapy. Journal of Translational Medicine, 18(1), 185. https://doi.org/10.1186/s12967-020-02355-3
  • Cao, Y., Wei, J., Zou, L., Jiang, T., Wang, G., Chen, L., Huang, L., Meng, F., Huang, L., Wang, N., Zhou, X., Luo, H., Mao, Z., Chen, X., Xie, J., Liu, J., Cheng, H., Zhao, J., Huang, G., Wang, W., & Zhou, J. (2020). Ruxolitinib in treatment of severe coronavirus disease. (2019). (COVID-19): A multicenter, single-blind, randomized controlled trial. Journal of Allergy and Clinical Immunology, 146(1), 137–146.e3. https://doi.org/10.1016/j.jaci.2020.05.019
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Choudhary, S., & Silakari, O. (2020). Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Virus Research, 289, 198146.
  • Copertino, D. C., Jr., Casado Lima, B. C., Duarte, R. R. R., Powell, T. R., Ormsby, C. E., Wilkin, T., Gulick, R. M., de Mulder Rougvie, M., & Nixon, D. F. (2021). Antiretroviral drug activity and potential for pre-exposure prophylaxis against COVID-19 and HIV infection. Journal of Biomolecular Structure & Dynamics, 18, 1–14. https://doi.org/10.1080/07391102.2021.1901144
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dastan, F., Tabarsi Payam, P., Marjani, M., Moniri, A., Hashemian, S. M. R., Tavakoli-Ardakani, M., & Saffaei, A. (2020). Thalidomide against coronavirus disease 2019 (COVID-19): A medicine with a thousand faces. Iranian Journal of Pharmaceutical Research, 19, 1, 1–2.
  • Dayer, M. R., Taleb-Gassabi, S., & Dayer, M. S. (2017). Lopinavir; a potent drug against coronavirus infection: Insight from molecular docking study. Archives of Clinical Infectious Diseases, 12(4), e13823. https://doi.org/10.5812/archcid.13823
  • de Oliveira, M. D. L., & Oliveira, K. (2020). Comparative docking of SARS-CoV-2 receptors antagonists from repurposing drugs. https://www.researchgate.net/publication/340389889
  • de Oliveira, O. V., Rocha, G. B., Paluch, A. S., & Costa, L. T. (2020). Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. Journal of Biomolecular Structure & Dynamics, 39(11), 3924–3933. doi: 10.1080/071102.2020.1772885.
  • Elekhnawy, E., Kamar, A. A., & Sonbol, F. (2021). Present and future treatment strategies for coronavirus disease 2019. Future Journal of Pharmaceutical Sciences, 7(1), 84. https://doi.org/10.1186/s43094-021-00238-y.
  • Eweas, A. F., Alhossary, A. A., & Abdel-Moneim, A. S. (2021). Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Frontiers in Microbiology, 11, 592908. https://doi.org/10.3389/fmicb.2020.592908
  • Fantini, J., Di Scala, C., Chahinian, H., & Yahi, N. (2020). Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International Journal of Antimicrobial Agents, 55(5), 105960. https://doi.org/10.1016/j.ijantimicag.2020.105960
  • Farrokhnia, M., & Mahnam, K. (2017). Molecular dynamics and docking investigations of several zoanthamine-type marine alkaloids as matrix metaloproteinase-1 inhibitors. Iranian Journal of Pharmaceutical Research, 16(1), 173–186.
  • Foerch, C., Friedauer, L., Bauer, B., Wolf, T., & Adam, E. H. (2020). Severe COVID-19 infection in a patient with multiple sclerosis treated with fingolimod. Multiple Sclerosis and Related Disorders, 42, 102180. https://doi.org/10.1016/j.msard.2020.102180
  • Gaillard, T. (2018). Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. Journal of Chemical Information and Modeling, 58(8), 1697–1706. https://doi.org/10.1021/acs.jcim.8b00312
  • Gaurav, D., Surojit, G., Shubham, G., Satyajit, G., Aniket, J., Ramkamal, S., Nabanita, M., Rajsekhar, R., & Surajit, G. (2020). An overview of key potential therapeutic strategies for combat in the COVID-19 battle. RSC Advances, 10, 28243.
  • Gohlke, H., & Case, D. A. (2004). Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. Journal of Computational Chemistry, 25(2), 238–250. https://doi.org/10.1002/jcc.10379
  • Guo, Z. R. (2009). Strategy of molecular drug design: Dual-target drug design. Yao Xue Xue Bao = Acta Pharmaceutica Sinica, 44(3), 209–218. Article in Chinese.
  • Hanson, Q. M., Wilson, K. M., Shen, M., Itkin, Z., Eastman, R. T., Shinn, P., Matthew, D., & Hall, M. D. (2020). Targeting ACE2-RBD interaction as a platform for COVID-19 therapeutics: Development and drug-repurposing screen of an AlphaLISA proximity assay. ACS Pharmacology & Translational Science, 3 (6), 1352–1360. https://doi.org/10.1021/acsptsci.0c00161
  • Harshitha, K., & Nair, R. A. (2020). Evaluation of DNA methylation changes by CRED-RA analysis following prednisone treatment of endophyte, Fusarium oxysporum. Indian Journal of Microbiology, 60(2), 254–258. https://doi.org/10.1007/s12088-020-00857-8
  • Hofmann, W. P., Herrmann, E., Sarrazin, C., & Zeuzem, S. (2008). Ribavirin mode of action in chronic hepatitis C: From clinical use back to molecular mechanisms. Liver International, 28 (10), 1332–1343.
  • Hu, X., Zhou, Z., Li, F., Xiao, Y., Wang, Z., Xu, J., Dong, F., Zheng, H., & Yu, R. (2021). The study of antiviral drugs targeting SARS-CoV-2 nucleocapsid and spike proteins through large-scale compound repurposing. Heliyon, 7(3), e06387. https://doi.org/10.1016/j.heliyon.2021.e06387
  • Huynh, T., Wang, H., & Luan, B. (2020). In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2's main protease. The Journal of Physical Chemistry Letters, 11(11), 4413–4420. https://doi.org/10.1021/acs.jpclett.0c00994
  • Ibrahim, M. A. A., Abdelrahman, A. H. M., & Hegazy, M. E. F. (2020). In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 39(15), 5756–5767. https://doi.org/10.1080/07391102.2020.1791958.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kalathiya, U., Padariya, M., Mayordomo, M., Lisowska, M., Nicholson, J., Singh, A., Baginski, M., Fahraeus, R., Carragher, N., Ball, K., Haas, J., Daniels, A., Hupp, T. R., & Alfaro, J. A. (2020). Highly conserved homotrimer cavity formed by the SARS-CoV-2 spike glycoprotein: A novel binding site. Journal of Clinical Medicine, 9(5), 1473. https://doi.org/10.3390/jcm9051473
  • Kim, M.-J., Kim, S. H., Park, J. A., Yu, K. L., Jang, S. I., Kim, B. S., Lee, E. S., & You, J. C. (2015). Identification and characterization of a new type of inhibitor against the human immunodeficiency virus type-1 nucleocapsid protein. Retrovirology, 12, 90. https://doi.org/10.1186/s12977-015-0218-9
  • Kimberly, E. (2019). Xofluza (baloxavir marboxil) for the treatment of acute uncomplicated influenza. P & T, 44(1), 9–11.
  • Kiselev, O. I., Deeva, E. G., Mel'nikova, T. I., Kozeletskaia, K. N., Kiselev, A. S., Rusinov, V. L., Charushin, V. N., & Chupakhin, O. N. (2012). A new antiviral drug Triazavirin: Results of phase II clinical trial. Voprosy Virusologii, 57(6), 9–12.
  • Komatsu, T. S., Okimoto, N., Koyama, Y. M., Hirano, Y., Morimoto, G., Ohno, Y., & Taiji, M. (2020). Drug binding dynamics of the dimeric SARS-CoV-2 main protease, determined by molecular dynamics simulation. Scientific Reports, 10(1), 16986. https://doi.org/10.1038/s41598-020-74099-5
  • Kouhpayeh, S., Shariati, L., Boshtam, M., Rahimmanesh, I., Mirian, M., Esmaeili, Y., Najaflu, M., Khanahmad, N., Zeinalian, M., Trovato, M., Tay, F. R., Khanahmad, H., & Makvandi, P. (2021). The molecular basis of COVID-19 pathogenesis, conventional and nanomedicine therapy. International Journal of Molecular Sciences, 22(11), 5438.
  • Kramer, M., Halleran, D., Rahman, M., Iqbal, M., Anwar, M. I., Anwar, M. I., Sabet, S., Ackad, E., Yousef, M. S., & Yousef, M. (2014). Comparative molecular dynamics simulation of hepatitis C Virus NS3/4A protease (genotypes 1b, 3a and 4b) predicts conformational instability of the catalytic triad in drug resistant strains. PLoS One, 9(8), e104425. https://doi.org/10.1371/journal.pone.0104425
  • Kumar, V., Kancharla, S., & Jena, M. K. (2021). In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19. Virusdisease, 32(1), 1–37. https://doi.org/10.1007/s13337-020-00643-6
  • Leneva, I. A., Pshenichnaya, N. Y., & Bulgakova, V. A. (2020). Umifenovir and coronavirus infections: A review of research results and clinical practice. Ter Arkh, 26(92(11), 91–97. Russian.
  • Lung, J., & Lin, Y. (2020). The potential SARS-CoV-2 entry inhibitor. BioRxiv. https://doi.org/10.1101/2020.03.26.009803
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Malik, S., Gupta, A., Zhong, X., Rasmussen, T. P., Manautou, J. E., & Bahal, R. (2020). Emerging therapeutic modalities against COVID-19. Pharmaceuticals, 13, 188. https://doi.org/10.3390/ph13080188
  • Mathur, P., Kottilil, S., & Wilson, E. (2018). Use of ribavirin for hepatitis C treatment in the modern direct-acting antiviral era. Journal of Clinical and Translational Hepatology, 6(4), 431–437. https://doi.org/10.14218/JCTH.2018.00007
  • Meisel, E., Efros, O., Bleier, J., Beit Halevi, T., Segal, G., Rahav, G., Leibowitz, A., & Grossman, E. (2021). Folate levels in patients hospitalized with coronavirus disease 2019. Nutrients, 13(3), 812. https://doi.org/10.3390/nu13030812
  • Miao, M., Jing, X., De Clercq, E., & Li, G. (2020). Danoprevir for the treatment of hepatitis C virus infection: Design, development, and place in therapy. Drug Design, Development and Therapy, 14, 2759–2774. https://doi.org/10.2147/DDDT.S254754
  • Mittal, L., Kumari, A., Srivastava, M., Singh, M., & Asthana, S. (2021). Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. Journal of Biomolecular Structure & Dynamics, 39(10), 3662–3680. https://doi.org/10.1080/07391102.2020.1768151
  • Mohammad, A., Al-Mulla, F., Wei, D. Q., & Abubaker, J. (2021). Remdesivir MD simulations suggest a more favourable binding to SARS-CoV-2 RNA dependent RNA polymerase mutant P323L than wild-type. Biomolecules, 11(7), 919. https://doi.org/10.3390/biom11070919
  • Mohammadi, S., Heidarizadeh, M., & Entesari, M. (2020). In silico investigation on the inhibiting role of nicotine/caffeine by blocking the S protein of SARS-CoV-2 versus ACE2 receptor. Microorganisms, 8(10), 1600. https://doi.org/10.3390/microorganisms8101600
  • Mohammadi-Milasi, F., Mahnam, K., & Shakhsi-Niaei, M. (2020). In silico study of the association of the HLA-A*31:01 allele (human leucocyte antigen allele 31:01) with neuroantigenic epitopes of PLP (proteolipid protein), MBP (myelin basic protein) and MOG proteins (myelin oligodendrocyte glycoprotein) for studying the multiple sclerosis disease pathogenesis. Journal of Biomolecular Structure and Dynamics, 39(10), 1–25. https://doi.org/10.1080/07391102.2020.1751291.
  • Mohammadpour, M., Fattahi, M. R., Sahraian, M. A., Moghadasi, A. N., & Navardi, S. (2021). Mild COVID-19 infection in a patient with multiple sclerosis, while taking fingolimod: A case report. Journal of Neurology and Neuroscience, 12, 2.
  • Naydenova, K., Muir, K. W., Wu, L. F., Zhang, Z., Coscia, F., Peet, M. J., Castro-Hartmann, P., Qian, P., Sader, K., Dent, K., Kimanius, D., Sutherland, J. D., Löwe, J., Barford, D., & Russo, C. J. (2021). Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proceedings of the National Academy of Sciences of the United States of America, 118(7), e2021946118. https://doi.org/10.1073/pnas.2021946118
  • Nezvalova-Henriksen, K. (2021). Remdesivir, hydroxychloroquine fail to show antiviral effects in patients with COVID-19. Annals of Internal Medicine. https://doi.org/10.7326/M21-0653.
  • Nukoolkarn, V., Lee, V. S., Malaisree, M., Aruksakulwong, O., & Hannongbua, S. (2008). Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL(pro) inhibitors. Journal of Theoretical Biology, 254(4), 861–867. https://doi.org/10.1016/j.jtbi.2008.07.030
  • Prajapat, M., Shekhar, N., Sarma, P., Avti, P., Singh, S., Kaur, H., Bhattacharyya, A., Kumar, S., Sharma, S., Prakash, A., & Medhi, B. (2020). Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS-CoV-2. Journal of Molecular Graphics & Modelling, 101, 107716. https://doi.org/10.1016/j.jmgm.2020.107716
  • Prashantha, C. N., Gouthami, K., Lavanya, L., Bhavanam, S., Jakhar, A., Shakthiraju, R. G., Suraj, V., Sahana, K. V., Sujana, H. S., Guruprasad, N. M., & Ramachandra, R. (2021). Molecular screening of antimalarial, antiviral, anti-inflammatory and HIV protease inhibitors against spike glycoprotein of coronavirus. Journal of Molecular Graphics & Modelling, 102, 107769. https://doi.org/10.1016/j.jmgm.2020.107769
  • Rampogu, S., & Lee, K. W. (2021). Pharmacophore modelling-based drug repurposing approaches for SARS-CoV-2 therapeutics. Frontiers in Chemistry, 10, 636362.
  • Rastelli, G., Rio, A. D., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM/PBSA and MM/GBSA. Journal of Computational Chemistry, 31(4), 797–810.
  • Rice, W. G., Turpin, J. A., Huang, M., Clanton, D., Buckheit, R. W., Covell, D. G., Wallqvist, A., McDonnell, N. B., DeGuzman, R. N., Summers, M. F., Zalkow, L., Bader, J. P., Haugwitz, R. D., & Sausville, E. A. (1997). Azodicarbonamide inhibits HIV-1 replication by targeting the nucleocapsid protein. Nature Medicine, 3(3), 341–345. https://doi.org/10.1038/nm0397-341
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Saeedi-Boroujeni, A., Mahmoudian-Sani, M. R., Nashibi, R., Houshmandfar, S., Tahmaseby Gandomkari, S., & Khodadadi, A. (2021). Tranilast: A potential anti-Inflammatory and NLRP3 inflammasome inhibitor drug for COVID-19. Immunopharmacology and Immunotoxicology, 43(3), 247–258. https://doi.org/10.1080/08923973.2021.1925293
  • Sahoo, S. K., & Vardhan, S. (2020). Computational evidence on repurposing the anti-influenza drugs baloxavir acid and baloxavir marboxil against COVID-19. https://arxiv.org/abs/2009.01094.
  • Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 69.
  • Sheybani, Z., Dokoohaki, M. H., Negahdaripour, M., Dehdashti, M., Zolghadr, H., & Moghadami, M. (2020). The role of folic acid in the management of respiratory disease caused by COVID-19. ChemRxiv. Cambridge Open Engage.
  • Singh, A., & Soliman, M. (2015). Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses. Drug Design, Development and Therapy, 9, 4137–4154.
  • Tariq, A., Mateen, R. M., Afzal, M. S., & Saleem, M. (2020). Paromomycin: A potential dual targeted drug effectively inhibits both spike (S1) and main protease of COVID-19. International Journal of Infectious Diseases, 98, 166–175. https://doi.org/10.1016/j.ijid.2020.06.063
  • Tiwari, V. (2020). Denovo design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2. Biology Open, 9, bio054056. https://doi.org/10.1242/bio.054056
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Unal, M. A., Bitirim, C. V., Summak, G. Y., Bereketoglu, S., Cevher Zeytin, I., Besbinar, O., Gurcan, C., Aydos, D., Goksoy, E., Kocakaya, E., Eran, Z., Murat, M., Demir, N., Aksoy Ozer, Z. B., Somers, J., Demir, E., Nazir, H., Ozkan, S. A., … Akcali, K. C. (2021). Ribavirin shows antiviral activity against SARS-CoV-2 and downregulates the activity of TMPRSS2 and the expression of ACE2 in vitro. Canadian Journal of Physiology and Pharmacology, 99(5), 449–460. https://doi.org/10.1139/cjpp-2020-0734
  • Unni, S., Aouti, S., & Padmanabhan, B. (2020). Identification of a potent inhibitor targeting the spike protein of pandemic human coronavirus, SARS-CoV-2 by computational methods. ChemRxiv. Cambridge Open Engage.
  • Uzunova, K., Filipova, E., Pavlova, V., & Vekov, T. (2020). Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 131, 110668. https://doi.org/10.1016/j.biopha.2020.110668
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Woods, R. J., & Chappelle, R. (2000). Restrained electrostatic potential atomic partial charges for condensed-phase simulations of carbohydrates. Theochem Journal of Molecular Structure., 527 (1-3), 149–156. https://doi.org/10.1016/S0166-1280(00)00487-5
  • Wu, X., Yu, K., Wang, Y., Xu, W., Ma, H., Hou, Y., Li, Y., Cai, B., Zhu, L., Zhang, M., Hu, X., Gao, J., Wang, Y., Qin, H., Wang, W., Zhao, M., Wu, X., Zhang, Y., Li, L., … Yang, B. (2020). Efficacy and safety of triazavirin therapy for coronavirus disease 2019: A pilot randomized controlled trial. Engineering (Beijing, China), 6(10), 1185–1191. https://doi.org/10.1016/j.eng.2020.08.011
  • Xia, X. (2021). Domains and functions of spike protein in SARS-Cov-2 in the context of vaccine design. Viruses, 13(1), 109. https://doi.org/10.3390/v13010109
  • Yoshino, R., Yasuo, N., & Sekijima, M. (2019). Molecular dynamics simulation reveals the mechanism by which the influenza cap-dependent endonuclease acquires resistance against baloxavir marboxil. Scientific Reports, 9(1), 17464. https://doi.org/10.1038/s41598-019-53945-1
  • Yung-Fang, T., Chian-Shiu, C., Aliaksandr, A., Yarmishyn, Y. L., Yung-Hung, L., Yi-Tsung, L., Wei-Yi, L., De-Ming, Y., Shih-Jie, C., Yi-Ping, Y., Mong-Lien, W., & Shih-Hwa, C. (2020). A review of SARS-CoV-2 and the ongoing clinical trials. International Journal of Molecular Sciences, 21, 2657. https://doi.org/10.3390/ijms21072657
  • Zhang, X. W., & Yap, Y. L. (2004). The 3D structure analysis of SARS-CoV S1 protein reveals a link to influenza virus neuraminidase and implications for drug and antibody discovery. Theochem Journal of Molecular Structure, 681(1), 137–141. https://doi.org/10.1016/j.theochem.2004.04.065

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.