278
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Clinically significant findings of high-risk mutations in human SLC29A4 gene associated with diabetes mellitus type 2 in Pakistani population

, , , , , , & ORCID Icon show all
Pages 12660-12673 | Received 16 Sep 2020, Accepted 27 Aug 2021, Published online: 23 Sep 2021

References

  • Ali, O. (2013). Genetics of type 2 diabetes. World Journal of Diabetes, 4(4), 114–123. https://doi.org/10.4239/wjd.v4.i4.114
  • Brunetti, A., Chiefari, E., & Foti, D. (2014). Recent advances in the molecular genetics of type 2 diabetes mellitus. World Journal of Diabetes, 5(2), 128–140.
  • Cheng, P. N., Liu, C., Zhao, M., Eisenberg, D., & Nowick, J. S. (2012). Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Nature Chemistry, 4(11), 927–933. https://doi.org/10.1038/nchem.1433
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics (Oxford, England), 31(16), 2745–2747.
  • Creative Research Systems. (2017). Creative Research Systems. [online][cited 2017 Jun 12]. Available from: URL:www.surveysystem.com.
  • Dawed, A. Y., Zhou, K., van Leeuwen, N., Mahajan, A., Robertson, N., Koivula, R., Elders, P. J. M., Rauh, S. P., Jones, A. G., Holl, R. W., Stingl, J. C., Franks, P. W., McCarthy, M. I., ‘T Hart, L. M., & Pearson, E. R. (2019). Variation in the plasma membrane monoamine transporter (PMAT, encoded in SLC29A4) and organic cation transporter 1 (OCT1, Encoded in SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes: An IMI DIRECT study. Diabetes Care, 42(6), 1027–1033. https://doi.org/10.2337/dc18-2182
  • Dayem Ullah, A. Z., Lemoine, N. R., & Chelala, C. (2012). SNPnexus: A web server for functional annotation of novel and publicly known genetic variants (2012 update). Nucleic Acids Research, 40(Web Server issue), W65–W70.
  • Feingold KR, Anawalt B, Boyce A, (Eds.). (2000). Chronic fatigue syndrome. MDText.com, Inc. (Last Update: July 12, 2020).
  • Garbuzynskiy, S. O., Lobanov, M. Y., & Galzitskaya, O. V. (2010). FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics (Oxford, England), 26(3), 326–332.
  • Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics (Oxford, England), 19(1), 163–164. https://doi.org/10.1093/bioinformatics/19.1.163
  • Gong, L., Goswami, S., Giacomini, K. M., Altman, R. B., & Klein, T. E. (2012). Metformin pathways: Pharmacokinetics and pharmacodynamics. Pharmacogenetics and Genomics, 22(11), 820–827.
  • Graham, G. G., Punt, J., Arora, M., Day, R. O., Doogue, M. P., Duong, J. K., Furlong, T. J., Greenfield, J. R., Greenup, L. C., Kirkpatrick, C. M., Ray, J. E., Timmins, P., & Williams, K. M. (2011). Clinical pharmacokinetics of metformin. Clinical Pharmacokinetics, 50(2), 81–98. https://doi.org/10.2165/11534750-000000000-00000
  • Hu, L., Zhuo, W., He, Y.-J., Zhou, H.-H., & Fan, L. (2012). Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy. Pharmacogenetics and Genomics, 22(11), 812–819. https://doi.org/10.1097/FPC.0b013e328358d92b
  • Inzucchi, S. E., Bergenstal, R. M., Buse, J. B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A. L., Tsapas, A., Wender, R., & Matthews, D. R. (2012). Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Spectrum, 25(3), 154–171. https://doi.org/10.2337/diaspect.25.3.154
  • Kirby, A., Gebski, V., & Keech, A. C. (2002). Determining the sample size in a clinical trial. The Medical Journal of Australia, 177(5), 256–257. https://doi.org/10.5694/j.1326-5377.2002.tb04759.x
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kumar, C. V., Swetha, R. G., Anbarasu, A., & Ramaiah, S. (2014). Computational analysis reveals the association of threonine 118 methionine mutation in PMP22 resulting in CMT-1A. Advances in Bioinformatics, 2014, 502618. https://doi.org/10.1155/2014/502618
  • Kuriata, A., Gierut, A. M., Oleniecki, T., Ciemny, M. P., Kolinski, A., Kurcinski, M., & Kmiecik, S. (2018). CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Research, 46(W1), W338–43. https://doi.org/10.1093/nar/gky356
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Mahjabeen, I., Baig, R. M., Masood, N., Sabir, M., Inayat, U., Malik, F. A., & Kayani, M. A. (2013). Genetic variations in XRCC1 gene in sporadic head and neck cancer (HNC) patients. Pathology Oncology Research : POR, 19(2), 183–188. https://doi.org/10.1007/s12253-012-9567-z
  • Manning, A. K., LaValley, M., Liu, C.-T., Rice, K., An, P., Liu, Y., Miljkovic, I., Rasmussen-Torvik, L., Harris, T. B., Province, M. A., Borecki, I. B., Florez, J. C., Meigs, J. B., Cupples, L. A., & Dupuis, J. (2011). Meta‐analysis of gene‐environment interaction: Joint estimation of SNP and SNP × environment regression coefficients. Genetic Epidemiology, 35(1), 11–18. https://doi.org/10.1002/gepi.20546
  • Mukherjee, A., Morales-Scheihing, D., Butler, P. C., & Soto, C. (2015). Type 2 diabetes as a protein misfolding disease. Trends in Molecular Medicine, 21(7), 439–449. https://doi.org/10.1016/j.molmed.2015.04.005
  • Nathan, D. M., Buse, J. B., Davidson, M. B., Heine, R. J., Holman, R. R., Sherwin, R., & Zinman, B. (2006). Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 29(8), 1963–1972. https://doi.org/10.2337/dc06-9912
  • Ngan, C. H., Hall, D. R., Zerbe, B., Grove, L. E., Kozakov, D., & Vajda, S. (2012). FTSite: High accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics (Oxford, England), 28(2), 286–287. https://doi.org/10.1093/bioinformatics/btr651
  • Olokoba, A. B., Obateru, O. A., & Olokoba, L. B. (2012). Type 2 diabetes mellitus: A review of current trends. Oman Medical Journal, 27(4), 269–273. https://doi.org/10.5001/omj.2012.68
  • Pandey, B., Grover, S., Tyagi, C., Goyal, S., Jamal, S., Singh, A., Kaur, J., & Grover, A. (2016). Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene, 581(1), 31–42. Apr 25https://doi.org/10.1016/j.gene.2016.01.024
  • Pereira, G. R., Da Silva, A. N., Do Nascimento, S. S., & De Mesquita, J. F. (2019). In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. Journal of Cellular Biochemistry, 120(3), 3583–3598. https://doi.org/10.1002/jcb.27636
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford, England), 30(3), 335–342.
  • Raj, M. G., Mathaiyan, J., Mukta, V., & Priyadarshini, R. (2018). Lack of effect of the SLC47A1 and SLC47A2 gene polymorphisms on the glycemic response to metformin in type 2 diabetes mellitus patients. Drug Metabolism and Personalized Therapy, 33(4), 175–185. https://doi.org/10.1515/dmpt-2018-0030
  • Scarpello, J. H., & Howlett, H. C. (2008). Metformin therapy and clinical uses. Diabetes & Vascular Disease Research, 5(3), 157–167. https://doi.org/10.3132/dvdr.2008.027
  • Semiz, S., Dujic, T., & Causevic, A. (2013). Pharmacogenetics and personalized treatment of type 2 diabetes. Biochemia Medica, 23(2), 154–171.
  • Shu, Y., Sheardown, S. A., Brown, C., Owen, R. P., Zhang, S., Castro, R. A., Ianculescu, A. G., Yue, L., Lo, J. C., Burchard, E. G., Brett, C. M., & Giacomini, K. M. (2007). Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. The Journal of Clinical Investigation, 117(5), 1422–1431.
  • Sissung, T. M., Troutman, S. M., Campbell, T. J., Pressler, H. M., Sung, H., Bates, S. E., & Figg, W. D. (2012). Transporter polymorphisms affect normal physiology, diseases, and pharmacotherapy. Discovery Medicine, 13(68), 19–34.
  • Stumvoll, M., Goldstein, B. J., & Van Haeften, T. W. (2005). Type 2 diabetes: Principles of pathogenesis and therapy. The Lancet, 365(9467), 1333–1346. https://doi.org/10.1016/S0140-6736(05)61032-X
  • Tarasova, L., Kalnina, I., Geldnere, K., Bumbure, A., Ritenberga, R., Nikitina-Zake, L., Fridmanis, D., Vaivade, I., Pirags, V., & Klovins, J. (2012). Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenetics and Genomics, 22(9), 659–666. https://doi.org/10.1097/FPC.0b013e3283561666
  • Thule, P. M. (2012). Mechanisms of current therapies for diabetes mellitus type 2. Advances in Physiology Education, 36(4), 275–283.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 548. https://doi.org/10.1186/1471-2105-11-548
  • Viollet, B., Guigas, B., Garcia, N. S., Leclerc, J., Foretz, M., & Andreelli, F. (2012). Cellular and molecular mechanisms of metformin: An overview. Clinical Science (London, England : 1979), 122(6), 253–270. https://doi.org/10.1042/CS20110386
  • Vitarani, D. A., Ningrum, R. I., & Rheza, F. (2019). Allele Frequency of SLC22A1 Met420del Metformin Main Transporter Encoding Gene among Javanese-Indonesian Population. Open Access Macedonian Journal of Medical Sciences, 7(3), 378–383. https://doi.org/10.3889/oamjms.2019.087
  • Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1053. https://doi.org/10.2337/diacare.27.5.1047
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Zhou, M., Xia, L., & Wang, J. (2007). Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 35(10), 1956–1962. https://doi.org/10.1124/dmd.107.015495

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.