169
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Self-assembly of soybean peroxidase nanohybrid for activity enhancement and dye decolorization: experimental and computational studies

, , , , , , , & show all
Pages 12739-12749 | Received 25 May 2021, Accepted 29 Aug 2021, Published online: 22 Sep 2021

References

  • Altinkaynak, C., Kocazorbaz, E., Özdemir, N., & Zihnioglu, F. (2018). Egg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes. International Journal of Biological Macromolecules, 109, 205–211. https://doi.org/10.1016/j.ijbiomac.2017.12.072
  • Altinkaynak, C., Tavlasoglu, S., Kalin, R., Sadeghian, N., Ozdemir, H., Ocsoy, I., & Özdemir, N. (2017). A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere, 182, 122–128. https://doi.org/10.1016/j.chemosphere.2017.05.012
  • Altinkaynak, C., Tavlasoglu, S., Özdemir, N., & Ocsoy, I. (2016). A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93-94, 105–112. https://doi.org/10.1016/j.enzmictec.2016.06.011
  • Altinkaynak, C., Yilmaz, I., Koksal, Z., Özdemir, H., Ocsoy, I., & Özdemir, N. (2016). Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. International Journal of Biological Macromolecules, 84, 402–409. https://doi.org/10.1016/j.ijbiomac.2015.12.018
  • Ambreen, S., Rehman, K., Zia, M. A., & Habib, F. (2000). Kinetic studies and partial purification of peroxidase in soybean. Pakistan Journal of Agricultural Sciences, 37(3–4), 10–13.
  • Berglund, G. I., Carlsson, G. H., Smith, A. T., Szöke, H., Henriksen, A., & Hajdu, J. (2002). The catalytic pathway of horseradish peroxidase at high resolution. Nature, 417(6887), 463–468. https://doi.org/10.1038/417463a
  • Bilal, M., Asgher, M., Shah, S. Z. H., & Iqbal, H. M. N. (2019). Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. International Journal of Biological Macromolecules, 135, 677–690. https://doi.org/10.1016/j.ijbiomac.2019.05.206
  • Chandane, P., Jori, C., Chaudhari, H., Bhapkar, S., Deshmukh, S., & Jadhav, U. (2020). Bioleaching of copper from large printed circuit boards for synthesis of organic-inorganic hybrid. Environmental Science and Pollution Research International, 27(6), 5797–5808. https://doi.org/10.1007/s11356-019-07244-x
  • Corona-Motolinia, N. D., Martínez-Valencia, B., Noriega, L., Sánchez-Gaytán, B. L., Méndez-Rojas, M. Á., Melendez, F. J., Castro, M. E., & González-Vergara, E. (2020). Synthesis, crystal structure, and computational methods of vanadium and copper compounds as potential drugs for cancer treatment. Molecules, 25(20), 1–23. https://doi.org/10.3390/molecules25204679
  • Cui, J., & Jia, S. (2017). Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coordination Chemistry Reviews, 352(29), 249–263. https://doi.org/10.1016/j.ccr.2017.09.008
  • Das, N., Khan, T., Subba, N., & Sen, P. (2021). Correlating Bromelain's activity with its structure and active-site dynamics and the medium's physical properties in a hydrated deep eutectic solvent. Physical Chemistry Chemical Physics: PCCP, 23(15), 9337–9346. https://doi.org/10.1039/d1cp00046b
  • Escobar, S., Velasco-Lozano, S., Lu, C. H., Lin, Y. F., Mesa, M., Bernal, C., & López-Gallego, F. (2017). Understanding the functional properties of bio-inorganic nanoflowers as biocatalysts by deciphering the metal-binding sites of enzymes. Journal of Materials Chemistry. B, 5(23), 4478–4486. https://doi.org/10.1039/c6tb03295h
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). Gaussian 09, Revision A.02. Gaussian, Inc.
  • Ge, J., Lei, J., & Zare, R. N. (2012). Protein-inorganic hybrid nanoflowers. Nature Nanotechnology, 7(7), 428–432. https://doi.org/10.1038/nnano.2012.80
  • Godoy, C. A., Rivas, B. D. L., Grazú, V., Montes, T., Guisàn, J. M., & López-Gallego, F. (2011). Glyoxyl-disulfide agarose: A tailor-made support for site-directed rigidification of proteins. Biomacromolecules, 12(5), 1800–1809. https://doi.org/10.1021/bm200161f
  • Gonçalves, M. C. P., Kieckbusch, T. G., Perna, R. F., Fujimoto, J. T., Morales, S. A. V., & Romanelli, J. P. (2019). Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochemistry, 76(2019), 95–110. https://doi.org/10.1016/j.procbio.2018.09.016
  • Hanefeld, U., Cao, L., & Magner, E. (2013). Enzyme immobilisation: Fundamentals and application. Chemical Society Reviews, 42(15), 6211–6212. https://doi.org/10.1039/c3cs90042h
  • He, G., Hu, W., & Li, C. M. (2015). Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity. Colloids and Surfaces. B, Biointerfaces, 135, 613–618. https://doi.org/10.1016/j.colsurfb.2015.08.030
  • Henriksen, A., Schuller, D. J., Meno, K., Welinder, K. G., Smith, A. T., & Gajhede, M. (1998). Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry, 37(22), 8054–8060. https://doi.org/10.1021/bi980234j
  • Henriksen, A., Smith, A. T., & Gajhede, M. (1999). The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates. The Journal of Biological Chemistry, 274(49), 35005–35011. https://doi.org/10.1074/jbc.274.49.35005
  • Hu, Y., Wang, Y., Deng, J., & Jiang, H. (2016). The structure of a prophenoloxidase (PPO) from Anopheles gambiae provides new insights into the mechanism of PPO activation. BMC Biology, 14(2), 2–13. https://doi.org/10.1186/s12915-015-0225-2
  • Huang, J., Cao, Y., Liu, Z., Deng, Z., Tang, F., & Wang, W. (2012). Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chemical Engineering Journal, 180, 75–80. https://doi.org/10.1016/j.cej.2011.11.005
  • Köhler, V., Wilson, Y. M., Dürrenberger, M., Ghislieri, D., Churakova, E., Quinto, T., Knörr, L., Häussinger, D., Hollmann, F., Turner, N. J., & Ward, T. R. (2013). Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nature Chemistry, 5(2), 93–99. https://doi.org/10.1038/nchem.1498
  • Lee, S. W., Cheon, S. A., Kim, M. I., & Park, T. J. (2015). Organic-inorganic hybrid nanoflowers: Types, characteristics, and future prospects. Journal of Nanobiotechnology, 13(54), 54–10. https://doi.org/10.1186/s12951-015-0118-0
  • Liu, Y., Ji, X., & He, Z. (2019). Organic-inorganic nanoflowers: From design strategy to biomedical applications. Nanoscale, 11(37), 17179–17194. https://doi.org/10.1039/c9nr05446d
  • Luong, N. T. Q., Cao, D. T., Anh, C. T., Minh, K. N., Hai, N. N., & Van Vu, L. (2019). Electrochemical synthesis of flower-like gold nanoparticles for SERS application. Journal of Electronic Materials, 48(8), 5328–5332. https://doi.org/10.1007/s11664-019-07343-y
  • Manghabati, H., & Pazuki, G. (2014). A study on the decolorization of methylene blue by Spirodela polyrrhiza: Experimentation and modeling. RSC Advances, 4(57), 30137–30144. https://doi.org/10.1039/C4RA04721D
  • Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  • Meno, K., Jennings, S., Smith, A. T., Henriksen, A., & Gajhede, M. (2002). Structural analysis of the two horseradish peroxidase catalytic residue variants H42E and R38S/H42E: Implications for the catalytic cycle. Acta Crystallographica. Section D, Biological Crystallography, 58(Pt 10 Pt 2), 1803–1812. https://doi.org/10.1107/s090744490201329x
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.https://doi.org/10.1002/jcc
  • Nadar, S. S., Gawas, S. D., & Rathod, V. K. (2016). Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability. International Journal of Biological Macromolecules, 92, 660–669. https://doi.org/10.1016/j.ijbiomac.2016.06.071
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Sardar, M., & Ahmad, R. (2015). Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochemistry & Analytical Biochemistry, 4(2), 1–8. https://doi.org/10.4172/2161-1009.1000178
  • Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42(15), 6223–6235. https://doi.org/10.1039/c3cs60075k
  • Somturk, B., Hancer, M., Ocsoy, I., & Özdemir, N. (2015). Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Transactions (Cambridge, England: 2003), 44(31), 13845–13852. https://doi.org/10.1039/c5dt01250c
  • Sun, J., Ge, J., Liu, W., Lan, M., Zhang, H., Wang, P., Wang, Y., & Niu, Z. (2014). Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: Synthesis and application as a colorimetric sensor. Nanoscale, 6(1), 255–262. https://doi.org/10.1039/c3nr04425d
  • Tonami, H., Uyama, H., Nagahata, R., & Kobayashi, S. (2004). Guaiacol oxidation products in the enzyme-activity assay reaction by horseradish peroxidase catalysis. Chemistry Letters, 33(7), 796–797. https://doi.org/10.1246/cl.2004.796
  • Valencia, D., Guillén, M., Fürst, M. J. L. J., López-Santín, J., & Álvaro, G. (2018). An immobilized and highly stabilized self-sufficient monooxygenase as biocatalyst for oxidative biotransformations. Journal of Chemical Technology & Biotechnology, 93(4), 985–993. https://doi.org/10.1002/jctb.5450
  • Wang, L. B., Wang, Y. C., He, R., Zhuang, A., Wang, X., Zeng, J., & Hou, J. G. (2013). A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. Journal of the American Chemical Society, 135(4), 1272–1275. https://doi.org/10.1021/ja3120136
  • Wu, Z., Li, H., Zhu, X., Li, S., Wang, Z., Wang, L., Li, Z., & Chen, G. (2017). Using laccases in the nanoflower to synthesize viniferin. Catalysts, 7(6), 188–112. https://doi.org/10.3390/catal7060188
  • Yao, J., & Wang, C. (2010). Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation. International Journal of Photoenergy, 2010, 1–6. https://doi.org/10.1155/2010/643182
  • Yashchenok, A. M., Borisova, D., Parakhonskiy, B. V., Masic, A., Pinchasik, B., Möhwald, H., & Skirtach, A. G. (2012). Nanoplasmonic smooth silica versus porous calcium carbonate bead biosensors for detection of biomarkers. Annalen Der Physik, 524(11), 723–732. https://doi.org/10.1002/andp.201200158
  • Yazawa, K., Sugahara, M., Yutani, K., Takehira, M., & Numata, K. (2016). Derivatization of proteinase K with heavy atoms enhances its thermal stability. ACS Catalysis, 6(5), 3036–3046. https://doi.org/10.1021/acscatal.6b00100
  • Yu, Y., Fei, X., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification. Colloids and Surfaces. B, Biointerfaces, 130, 299–304. https://doi.org/10.1016/j.colsurfb.2015.04.033
  • Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 5(8), 4503–4513. https://doi.org/10.1021/acscatal.5b00996
  • Zhang, Z., Zhang, Y., He, L., Yang, Y., Liu, S., Wang, M., Fang, S., & Fu, G. (2015). A feasible synthesis of Mn3(PO4)2@BSA nanoflowers and its application as the support nanomaterial for Pt catalyst. Journal of Power Sources, 284, 170–177. https://doi.org/10.1016/j.jpowsour.2015.03.011
  • Zheng, J. N., He, L. L., Chen, C., Wang, A. J., Ma, K. F., & Feng, J. J. (2014). One-pot synthesis of platinum3cobalt nanoflowers with enhanced oxygen reduction and methanol oxidation. Journal of Power Sources, 268, 744–751. https://doi.org/10.1016/j.jpowsour.2014.06.109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.