2,198
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Understanding the molecular interaction of SARS-CoV-2 spike mutants with ACE2 (angiotensin converting enzyme 2)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12760-12771 | Received 01 Jul 2021, Accepted 29 Aug 2021, Published online: 08 Sep 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230. https://doi.org/10.3389/fchem.2021.661230
  • Ali, A., & Vijayan, R. (2020). Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Scientific Reports, 10, 14214. https://doi.org/10.1038/s41598-020-71188-3
  • Amin, M., Sorour, M. K., & Kasry, A. (2020). Comparing the binding interactions in the receptor binding domains of SARS-CoV-2 and SARS-CoV. The Journal of Physical Chemistry Letters, 11, 4897–4900. https://doi.org/10.1021/acs.jpclett.0c01064
  • Anonymous (2021). COVID-19 vaccine (D. Harkless (Ed.)). Wikipedia.
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences United States of America, 98, 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Barros, R. O., Junior, F. L., Pereira, W. S., Oliveira, N. M., & Ramos, R. M. (2020). Interaction of drug candidates with various SARS-CoV-2 receptors: An in silico study to combat COVID-19. Journal of Proteome Research, 19, 4567–4575. https://doi.org/10.1021/acs.jproteome.0c00327
  • Ceraolo, C., & Giorgi, F. M. (2020). Genomic variance of the 2019-nCoV coronavirus. Journal of Medical Virology, 92, 522–528. https://doi.org/10.1002/jmv.25700
  • Chand, M., Hopkins, S., Dabrera, G., Achison, C., Barclay, W., Ferguson, N., Volz, E., Loman, N., Rambaut, A., & Barrett, J., 2020. Investigation of novel SARS-COV-2 variant, Variant of Concern 202012/01. Public Health England, United Kingdom, pp. 1–11.
  • Chen, R. E., Zhang, X., Case, J. B., Winkler, E. S., Liu, Y., VanBlargan, L. A., Liu, J., Errico, J. M., Xie, X., Suryadevara, N., Gilchuk, P., Zost, S. J., Tahan, S., Droit, L., Turner, J. S., Kim, W., Schmitz, A. J., Thapa, M., Wang, D., … Diamond, M. S. (2021). Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 27, 717–726. https://doi.org/10.1038/s41591-021-01294-w
  • Choi, B., Choudhary, M. C., Regan, J., Sparks, J. A., Padera, R. F., Qiu, X., Solomon, I. H., Kuo, H. H., Boucau, J., Bowman, K., Adhikari, U. D., Winkler, M. L., Mueller, A. A., Hsu, T. Y., Desjardins, M., Baden, L. R., Chan, B. T., Walker, B. D., Lichterfeld, M., … Li, J. Z. (2020). Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. New England Journal of Medicine, 383, 2291–2293. https://doi.org/10.1056/NEJMc2031364
  • ClinicalTrials.gov. (2020a). Clinical trial of efficacy, safety, and immunogenicity of Gam-COVID-Vac vaccine against COVID-19.
  • ClinicalTrials.gov. (2020b). Clinical trial of recombinant novel coronavirus vaccine (Adenovirus Type 5 Vector) against COVID-19.
  • ClinicalTrials.gov. (2020c). Safety and immunogenicity study of inactivated vaccine for prevention of SARS-CoV-2 infection (COVID-19) (Renqiu).
  • ClinicalTrials.gov. (2020d). Study to describe the safety, tolerability, immunogenicity, and efficacy of RNA vaccine candidates against COVID-19 in healthy adults.
  • ClinicalTrials.gov. (2020e). A study to evaluate efficacy, safety, and immunogenicity of mRNA-1273 vaccine in adults aged 18 years and older to prevent COVID-19.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 10089–10092. https://doi.org/10.1063/1.464397
  • de Andrade, J., Gonçalves, P. F. B., & Netz, P. A. (2020). Why does the novel coronavirus spike protein interact so strongly with the human ACE2? A thermodynamic answer. ChemBioChem, 22, 865–875. https://doi.org/10.1002/cbic.202000455
  • de Oliveira, O. V., Rocha, G. B., Paluch, A. S., & Costa, L. T. (2021). Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. Journal of Biomolecular Structure and Dynamics, 11, 3924–3933 https://doi.org/10.1080/07391102.2020.1772885
  • De Vries, S. J., Van Dijk, M., & Bonvin, A. M. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5, 883. https://doi.org/10.1038/nprot.2010.32
  • Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125, 1731–1737. https://doi.org/10.1021/ja026939x
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999–2012. https://doi.org/10.1002/jcc.10349
  • Ekins, S., Mottin, M., Ramos, P. R., Sousa, B. K., Neves, B. J., Foil, D. H., Zorn, K. M., Braga, R. C., Coffee, M., & Southan, C. (2020). Déjà vu: Stimulating open drug discovery for SARS-CoV-2. Drug Discovery Today, 25, 928–941. https://doi.org/10.1016/j.drudis.2020.03.019
  • European Centre for Disease Prevention and Control (ECDC). (2021). SARS-CoV-2 variants of concern as of 21 May 2021. file:///C:/Users/ANT%C4%B0OKS%C4%B0DAN/Downloads/2_En_G%C3%BCncel_SARS-CoV-2%20variants%20of%20concern%20as%20of%2021%20May%202021.pdf
  • Fernández, A. (2021). COVID-19 evolution in the post-vaccination phase: Endemic or extinct? ACS Pharmacology & Translational Science, 4, 403–405. https://doi.org/10.1021/acsptsci.0c00220
  • Ferrareze, P. A. G., Franceschi, V. B., de Menezes Mayer, A., Caldana, G. D., Zimerman, R. A., & Thompson, C. E. (2021). E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. bioRxiv. https://doi.org/10.1101/2021.01.27.426895
  • Franceschi, V. B., Caldana, G. D., de Menezes Mayer, A., Cybis, G. B., Neves, C. A. M., Ferrareze, P. A. G., Demoliner, M., de Almeida, P. R., Gularte, J. S., Hansen, A. W., Weber, M. N., Fleck, J. D., Zimerman, R. A., Kmetzsch, L., Spilki, F. R., & Thompson, C. E. (2021). Genomic epidemiology of SARS-CoV-2 in Esteio, Rio Grande do Sul, Brazil. BMC Genomics, 22, 371. https://doi.org/10.1186/s12864-021-07708-w
  • Franceschi, V. B., Ferrareze, P. A. G., Zimerman, R. A., Cybis, G. B., & Thompson, C. E. (2021). Mutation hotspots, geographical and temporal distribution of SARS-CoV-2 lineages in Brazil, February 2020 to February 2021: Insights and limitations from uneven sequencing efforts. MedRxiv. https://doi.org/10.1101/2021.03.08.21253152
  • Fratev, F. (2020). The N501Y and K417N mutations in the spike protein of SARS-CoV-2 alter the interactions with both hACE2 and human derived antibody: A Free energy of perturbation study. bioRxiv. https://doi.org/10.1101/2020.12.23.424283
  • Ghorbani, M., Brooks, B. R., & Klauda, J. B. (2020). Critical sequence hotspots for binding of novel coronavirus to angiotensin converter enzyme as evaluated by molecular simulations. Journal of Physical Chemistry B, 124, 10034–10047. https://doi.org/10.1021/acs.jpcb.0c05994
  • Gobeil, S. M. C., Janowska, K., McDowell, S., Mansouri, K., Parks, R., Stalls, V., Kopp, M. F., Manne, K., Saunders, K., Edwards, R. J., Haynes, B. F., Henderson, R. C., & Acharya, P. (2021). Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity. bioRxiv: the preprint server for biology. https://doi.org/10.1101/2021.03.11.435037.
  • Harrison, C. (2020). Coronavirus puts drug repurposing on the fast track. Nature Biotechnology, 38, 379–381. https://doi.org/10.1038/d41587-020-00003-1
  • Hattori, T., Koide, A., Noval, M. G., Panchenko, T., Romero, L. A., Teng, K. W., Tada, T., Landau, N. R., Stapleford, K. A., & Koide, S. (2021). The ACE2-binding interface of SARS-CoV-2 spike inherently deflects immune recognition. Journal of Molecular Biology, 433, 166748. https://doi.org/10.1016/j.jmb.2020.166748
  • Hoffmann, M., Arora, P., Groß, R., Seidel, A., Hörnich, B. F., Hahn, A. S., Krüger, N., Graichen, L., Hofmann-Winkler, H., Kempf, A., Winkler, M. S., Schulz, S., Jäck, H.-M., Jahrsdörfer, B., Schrezenmeier, H., Müller, M., Kleger, A., Münch, J., & Pöhlmann, S. (2021). SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 184, 2384–2393.e12. https://doi.org/10.1016/j.cell.2021.03.036
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson–Boltzmann surface area method. Molecular Informatics, 31, 114–122. https://doi.org/10.1002/minf.201100135
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A: Atomic, Molecular, and Optical Physics, 31, 1695–1697.
  • Hu, J., Peng, P., Wang, K., Liu, B.-z., Fang, L., Luo, F.-y., Jin, A.-s., Tang, N., & Huang, A. (2021). Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies. Cellular & Molecular Immunology, 18, 1061–1063.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14, 27–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Idris, M. O., Yekeen, A. A., Alakanse, O. S., & Durojaye, O. A. (2020). Computer-aided screening for potential TMPRSS2 inhibitors: a combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. Journal of Biomolecular Structure and Dynamics, 39, 5638–5656. https://doi.org/10.1080/07391102.2020.1792346
  • Jangra, S., Ye, C., Rathnasinghe, R., Stadlbauer, D., Personalized Virology Initiative study, g., Krammer, F., Simon, V., Martinez-Sobrido, L., Garcia-Sastre, A., & Schotsaert, M. (2021). SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe, 2, e283–e284. https://doi.org/10.1016/S2666-5247(21)00068-9
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79, 926–935. https://doi.org/10.1063/1.445869
  • Kastritis, P. L., Rodrigues, J. P., Folkers, G. E., Boelens, R., & Bonvin, A. M. (2014). Proteins feel more than they see: Fine-tuning of binding affinity by properties of the non-interacting surface. Journal of Molecular Biology, 426, 2632–2652. https://doi.org/10.1016/j.jmb.2014.04.017
  • Kemp, S. A., Datir, R. P., Collier, D. A., Ferreira, I. A. T. M., Carabelli, A., Harvey, W., Robertson, D. L., Gupta, & R. K., 2020. Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70, 15 December 2020 ed. bioRxiv.
  • Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372, 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962. https://doi.org/10.1021/ci500020m
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Li, J., Hou, C., Wang, M., Liao, C., Guo, S., Shi, L., Ma, X., Zhang, H., Jiang, S., & Zheng, B. (2021). Hydrophobic interaction determines docking affinity of SARS CoV 2 variants with antibodies. arXiv preprint arXiv:2103.00399.
  • Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 526, 165–169. https://doi.org/10.1016/j.bbrc.2020.03.047
  • Nelson, G., Buzko, O., Spilman, P., Niazi, K., Rabizadeh, S., & Soon-Shiong, P. (2021). Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. bioRxiv 2021.2001.2013.426558. https://doi.org/10.1101/2021.01.13.426558
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190. https://doi.org/10.1063/1.328693
  • Pedretti, A., Villa, L., & Vistoli, G. (2004). VEGA – An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. Journal of Computer-Aided Molecular Design, 18, 167–173. https://doi.org/10.1023/B:JCAM.0000035186.90683.f2
  • Qiao, B., & Olvera de la Cruz, M. (2020). Enhanced binding of SARS-CoV-2 spike protein to receptor by distal polybasic cleavage sites. ACS Nano, 14, 10616–10623. https://doi.org/10.1021/acsnano.0c04798
  • Rambaut, A., Loman, N., Pybus, O., Barclay, W., Barrett, J., Carabelli, A., Connor, T., Peacock, T., Robertson, D. L., & Volz, E. 2020. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Virological.org. https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
  • Riou, J., & Althaus, C. L. (2020). Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance, 25, 2000058.
  • Sakkiah, S., Guo, W., Pan, B., Ji, Z., Yavas, G., Azevedo, M., Hawes, J., Patterson, T. A., & Hong, H. (2020). Elucidating interactions between SARS-CoV-2 trimeric spike protein and ACE2 using homology modeling and molecular dynamics simulations. Frontiers in Chemistry, 8, 622632.
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581, 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Sharma, A., Tiwari, V., & Sowdhamini, R. (2020). Computational search for potential COVID-19 drugs from FDA-approved drugs and small molecules of natural origin identifies several anti-virals and plant products. Journal of Biosciences, 45, 1–18. https://doi.org/10.1007/s12038-020-00069-8
  • Shrake, A., & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms. Lysozyme and insulin. Journal of Molecular Biology, 79, 351–371. https://doi.org/10.1016/0022-2836(73)90011-9
  • Singh, T. U., Parida, S., Lingaraju, M. C., Kesavan, M., Kumar, D., & Singh, R. K. (2020). Drug repurposing approach to fight COVID-19. Pharmacological Reports, 72, 1479–1508. https://doi.org/10.1007/s43440-020-00155-6
  • Spinello, A., Saltalamacchia, A., & Magistrato, A. (2020). Is the rigidity of SARS-CoV-2 spike receptor-binding motif the hallmark for its enhanced infectivity? Insights from all-atom simulations. The Journal of Physical Chemistry Letters, 11, 4785–4790. https://doi.org/10.1021/acs.jpclett.0c01148
  • Starr, T. N., Greaney, A. J., Hilton, S. K., Crawford, K. H. D., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., Veesler, D., & Bloom, J. D. (2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell, 182, 1295–1310. https://doi.org/10.1016/j.cell.2020.08.012
  • Team, E. E. (2021). Updated rapid risk assessment from ECDC on the risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA–First update. Eurosurveillance, 26, 2101211.
  • Tian, F., Tong, B., Sun, L., Shi, S., Zheng, B., Wang, Z., Dong, X., & Zheng, P. (2021). Mutation N501Y in RBD of spike protein strengthens the interaction between COVID-19 and its receptor ACE2. bioRxiv. https://doi.org/10.1101/2021.02.14.431117
  • Verkhivker, G. M. (2020). Molecular simulations and network modeling reveal an allosteric signaling in the SARS-CoV-2 spike proteins. Journal of Proteome Research, 19, 4587–4608. https://doi.org/10.1021/acs.jproteome.0c00654
  • Verkhivker, G. M., & Di Paola, L. (2021). Dynamic network modeling of allosteric interactions and communication pathways in the SARS-CoV-2 spike trimer mutants: Differential modulation of conformational landscapes and signal transmission via cascades of regulatory switches. Journal of Physical Chemistry B, 125, 850–873. https://doi.org/10.1021/acs.jpcb.0c10637
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 183, 1735. https://doi.org/10.1016/j.cell.2020.02.058
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94, e00127-20. https://doi.org/10.1128/JVI.00127-20
  • Wang, J., Xu, X., Zhou, X., Chen, P., Liang, H., Li, X., Zhong, W., & Hao, P. (2020). Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection. Journal of General Virology, 101, 921–924. https://doi.org/10.1099/jgv.0.001452
  • Wang, Y., Liu, M., & Gao, J. (2020). Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proceedings of the National Academy of Sciences United States of America, 117, 13967–13974. https://doi.org/10.1073/pnas.2008209117
  • Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C. O., Finkin, S., Schaefer-Babajew, D., Cipolla, M., Gaebler, C., Lieberman, J. A., Oliveira, T. Y., Yang, Z., Abernathy, M. E., Huey-Tubman, K. E., Hurley, A., Turroja, M., West, K. A., Gordon, K., Millard, K. G., … & Nussenzweig, M. C. (2021). mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 592, 616–622. https://doi.org/10.1038/s41586-021-03324-6
  • WHO. (2020). Coronavirus disease 2019 (COVID-19) situation report, p. 52. https://apps.who.int/iris/handle/10665/331476
  • Wibmer, C. K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B. E., de Oliveira, T., Vermeulen, M., van der Berg, K., Rossouw, T., Boswell, M., Ueckermann, V., Meiring, S., von Gottberg, A., Cohen, C., Morris, L., Bhiman, J. N., & Moore, P. L. (2021). SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nature Medicine, 27, 622–625. https://doi.org/10.1038/s41591-021-01285-x
  • Wise, J. (2021). Covid-19: The E484K mutation and the risks it poses. BMJ, 372, n359.
  • Worldometer. (2020). Covid-19 coronavirus pandemic. Dadax Limited. https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367, 1260–1263. https://doi.org/10.1126/science.abb2507
  • Xie, X., Liu, Y., Liu, J., Zhang, X., Zou, J., Fontes-Garfias, C. R., Xia, H., Swanson, K. A., Cutler, M., & Cooper, D. (2021). Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Medicine, 27, 620–621. https://doi.org/10.1038/s41591-021-01270-4
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367, 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yi, C., Sun, X., Ye, J., Ding, L., Liu, M., Yang, Z., Lu, X., Zhang, Y., Ma, L., Gu, W., Qu, A., Xu, J., Shi, Z., Ling, Z., & Sun, B. (2020). Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cellular & Molecular Immunology, 17, 621–630.
  • Zhang, Y., He, X., Man, V. H., Zhai, J., Ji, B., & Wang, J. (2021). Binding profile assessment of N501Y: A more infectious mutation on the receptor binding domain of SARS-CoV-2 spike protein. ChemRxiv. https://doi.org/10.26434/chemrxiv.13710961.v2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.