534
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel potential inhibitors of varicella-zoster virus thymidine kinase from ethnopharmacologic relevant plants through an in-silico approach

ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 12932-12947 | Received 25 Feb 2021, Accepted 03 Sep 2021, Published online: 17 Sep 2021

References

  • Abo Almaali, H. (2018). Molecular docking of some peptides to varicella zoster virus drug targets. Albahir Journal, 7, 13–14.
  • Ajiboye, T. (2015). Standardized extract of Vitex doniana Sweet stalls protein oxidation, lipid peroxidation and DNA fragmention in acetaminophen-induced hepatotoxicity. Journal of Ethnopharmacology, 164, 273–282. https://doi.org/10.1016/j.jep.2015.01.026
  • Al-Khafaji, K., Al-Duhaidahawi, D., & Taskin Tok, T. (2020). Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 39(9), 1–9. https://doi.org/10.1080/07391102.2020.1764392
  • Alves, M. J., Froufe, H. J. C., Costa, A. F. T., Santos, A. F., Oliveira, L. G., Osório, S. R. M., Abreu, R. M. V., Pintado, M., & Ferreira, I. C. F. R. (2014). Docking studies in target proteins involved in antibacterial action mechanisms: Extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules (Basel, Switzerland), 19(2), 1672–1684. Multidisciplinary Digital Publishing Institute), https://doi.org/10.3390/molecules19021672
  • Andrei, G., & Snoeck, R. (2011). Engineering drugs for varicella-zoster virus infections. Expert Opinion on Emerging Drugs, 16(3), 507–535. https://doi.org/10.1517/14728214.2011.591786
  • Angamuthu, D., Purushothaman, I., Kothandan, S., & Swaminathan, R. (2019). Antiviral study on Punica granatum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to Human Herpes Virus-3. European Journal of Integrative Medicine, 28, 98–108. https://doi.org/10.1016/j.eujim.2019.04.008
  • Applequist, W. L., & Moerman, D. E. (2011). Yarrow (Achillea millefolium L.): A neglected panacea? A review of ethnobotany, bioactivity, and biomedical research. Economic Botany, 65(2), 209–225. https://doi.org/10.1007/s12231-011-9154-3
  • Armulik, A., Genové, G., Mäe, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., Johansson, B. R., & Betsholtz, C. (2010). Pericytes regulate the blood–brain barrier. Nature, 468(7323), 557–561.
  • Artemova, S., Jaillet, L., & Redon, S. (2016). Automatic molecular structure perception for the universal force field. Journal of Computational Chemistry, 37(13), 1191–1205.
  • Arvin, A. M. (1996). Varicella-zoster virus. Clinical Microbiology Reviews, 9(3), 361–381. https://doi.org/10.1128/CMR.9.3.361
  • Ayitey-Smith, E. (1989). Prospects and scope of plant medicine in health care. University of Ghana.
  • Balfour, H. H., Jr., Edelman, C. K., Anderson, R. S., Reed, N. V., Slivken, R. M., Marmor, L. H., Dix, L., Aeppli, D., & Talarico, C. L. (2001). Controlled trial of acyclovir for chickenpox evaluating time of initiation and duration of therapy and viral resistance. The Pediatric Infectious Disease Journal, 20(10), 919–926. https://doi.org/10.1097/00006454-200110000-00002
  • Baxter, R., Ray, P., Tran, T. N., Black, S., Shinefield, H. R., Coplan, P. M., Lewis, E., Fireman, B., & Saddier, P. (2013). Long- term effectiveness of caricella vaccine: A 14-year, prospective cohort study. PEDIATRICS, 131(5), e1389–e1396. https://doi.org/10.1542/peds.2012-3303
  • Benedek, B., & Kopp, B. (2007). Achillea millefolium L. sl revisited: Recent findings confirm the traditional use. Wiener Medizinische Wochenschrift, 157(13–14), 312–314. https://doi.org/10.1007/s10354-007-0431-9
  • Bird, L. E., Ren, J., Wright, A., Leslie, K. D., Degrève, B., Balzarini, J., & Stammers, D. K. (2003). Crystal structure of varicella zoster virus thymidine kinase. Journal of Biological Chemistry, 278(27), 24680–24687. https://doi.org/10.1074/jbc.M302025200
  • Bonsu, A. (2012). Healing with simple plants. Radiant Health Publications.
  • Camacho-Soto, A., Faust, I., Racette, B. A., Clifford, D. B., Checkoway, H., & Nielsen, S. S. (2021). Herpesvirus infections and risk of Parkinson’s disease. Neurodegenerative Diseases, 20(2-3), 97–103.
  • Chandler, R. F., Hooper, S. N., & Harvey, M. J. (1982). Ethnobotany and phytochemistry of yarrow, Achillea millefolium, Compositae. Economic Botany, 36(2), 203–223. https://doi.org/10.1007/BF02858720
  • Chen, Y., & Liu, L. (2012). Modern methods for delivery of drugs across the blood-brain barrier. Advanced Drug Delivery Reviews, 64(7), 640–665. https://doi.org/10.1016/j.addr.2011.11.010
  • Chou, S., & Lurain, N. S. (2019). Antiviral consideration for transplantation including drug resistance. In Safdar Amar (Ed.), Principles and practice of transplant infectious diseases (pp. 953–975). New York, NY: Springer.
  • Civen, R., Chaves, S. S., Jumaan, A., Wu, H., Mascola, L., Gargiullo, P., & Seward, J. F. (2009). The incidence and clinical characteristics of herpes zoster among children and adolescents after implementation of varicella vaccination. Pediatric Infectious Disease Journal, 28(11), 954–959. https://doi.org/10.1097/INF.0b013e3181a90b16
  • Cohen, J. I., Brunell, P. A., Straus, S. E., & Krause, P. R. (1999). Recent advances in varicella-zoster virus infection. Annals of Internal Medicine, 130(11), 922–932.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Donato, M. T., & Castell, J. V. (2003). Strategies and molecular probes to investigate the role of cytochrome P450 in drug metabolism. Clinical Pharmacokinetics, 42(2), 153–178.
  • Dong, Y-w., Liao, M-l., Meng, X-l., & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences, 115(6), 1274–1279. https://doi.org/10.1073/pnas.1718910115
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Eyog Matig, O., Gaoué, O., & Dossou, B. (éditeurs). (2002). Réseau «Espèces Ligneuses Alimentaires». Compte rendu de la première réunion du Réseau tenue 11–13 décembre 2000 au CNSF Ouagadougou, Burkina Faso. Institut International des Ressources Phytogénétiques.
  • Filimonov, D., Lagunin, A., Gloriozova, T., Rudik, A., Druzhilovskii, D., Pogodin, P., & Poroikov, V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Floret, D. (2005). Immunization against varicella. Therapie, 60(3), 275–282. https://doi.org/10.2515/therapie:2005036
  • Geesink, H. J., & Meijer, D. K. (2021). A predictive model that reveals a causal relation between exposures to non-thermal electromagnetic waves and biological effects (update January 2021).
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gershon, A. A. (2017). Is chickenpox so bad, what do we know about immunity to varicella zoster virus, and what does it tell us about the future? Journal of Infection, 74, S27–S33. https://doi.org/10.1016/S0163-4453(17)30188-3
  • Goel, R. K., Singh, D., Lagunin, A., & Poroikov, V. (2011). PASS-assisted exploration of new therapeutic potential of natural products. Medicinal Chemistry Research, 20(9), 1509–2523. https://doi.org/10.1007/s00044-010-9398-y
  • Goksuluk, D., Korkmaz, S., Zararsiz, G., & Karaagaoglu, A. E. (2016). easyROC: An interactive web-tool for ROC curve analysis using R language environment. The R Journal, 8(2), 213. https://doi.org/10.32614/RJ-2016-042
  • Granchi, C., Capecchi, A., Del Frate, G., Martinelli, A., Macchia, M., Minutolo, F., & Tuccinardi, T. (2015). Development and validation of a docking-based virtual screening platform for the identification of new lactate dehydrogenase inhibitors. Molecules (Basel, Switzerland), 20(5), 8772–8790.
  • Grienke, U., Richter, M., Walther, E., Hoffmann, A., Kirchmair, J., Makarov, V., Nietzsche, S., Schmidtke, M., & Rollinger, J. M. (2016). Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Scientific Reports, 6(1), 27156–27111. https://doi.org/10.1038/srep27156
  • Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis, 30(S1), S162–S173. https://doi.org/10.1002/elps.200900140
  • Gutierrez, R. M., Mitchell, S., & Solis, R. V. (2008). Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 117(1), 1–27. https://doi.org/10.1016/j.jep.2008.01.025
  • Hedley, P. L., Jørgensen, P., Schlamowitz, S., Wangari, R., Moolman-Smook, J., Brink, P. A., Kanters, J. K., Corfield, V. A., & Christiansen, M. (2009). The genetic basis of long QT and short QT syndromes: A mutation update. Human Mutation, 30(11), 1486–1511. https://doi.org/10.1002/humu.21106
  • Heifets, A., & Lilien, R. H. (2010). LigAlign: Flexible ligand-based active site alignment and analysis. Journal of Molecular Graphics & Modelling, 29(1), 93–101. https://doi.org/10.1016/j.jmgm.2010.05.005
  • Heininger, U., & Seward, J. F. (2006). Varicella. The Lancet, 368(9544), 1365–1376. https://doi.org/10.1016/S0140-6736(06)69561-5
  • Hoffmann, A., Doring, K., Seeger, N. T., Buhler, M., Schacke, M., Krumbholz, A., & Sauerbrei, A. (2017). Genetic polymorphism of thymidine kinase (TK) and DNA polymerase (pol) of clinical varicella-zoster virus (VZV) isolates collected over three decades. Journal of Clinical Virology : The Official Publication of the Pan American Society for Clinical Virology, 95, 61–65. https://doi.org/10.1016/j.jcv.2017.08.011
  • Huie, C. W. (2002). A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Analytical and Bioanalytical Chemistry, 373(1–2), 23–30. https://doi.org/10.1007/s00216-002-1265-3
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2021). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(9), 3213–3212.
  • Jaillet, L., Artemova, S., & Redon, S. (2017). IM-UFF: Extending the universal force field for interactive molecular modeling. Journal of Molecular Graphics & Modelling, 77, 350–362.
  • Jean, B. M., Nâg-Tiero, M. R., Hermann, O. Y., & Germaine, N. O. (2019). Traditional uses, phytochemistry and pharmacology review of 2 Vitex: Diversifolia and doniana. International Journal of Research and Development in Pharmacy & Life Sciences, 8(2), 29–36. https://doi.org/10.21276/IJRDPL.2278-0238.2019.8(2).29-36
  • Kadioglu, O., Saeed, M., Greten, H. J., & Efferth, T. (2021). Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Computers in biology and medicine, 133, 104359.
  • Khan, T., Khan, M. A., Ullah, N., & Nadhman, A. (2020). Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatalysis and Agricultural Biotechnology, 31, 101890.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Kumari, R., Kumar, R., Lynn, A, & Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kwofie, S. K., Broni, E., Asiedu, S. O., Kwarko, G. B., Dankwa, B., Enninful, K. S., Tiburu, E. K., & Wilson, M. D. (2021). Cheminformatics-based identification of potential novel anti-SARS-CoV-2 natural compounds of African origin. Molecules, 26(2), 406. https://doi.org/10.3390/molecules26020406
  • Kwofie, S. K., Broni, E., Teye, J., Quansah, E., Issah, I., Wilson, M. D., Miller, W. A., Tiburu, E. K., & Bonney, J. H. K. (2019). Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Computers in Biology and Medicine, 113, 103414. https://doi.org/10.1016/j.compbiomed.2019.103414
  • Kwofie, S. K., Dankwa, B., Enninful, K. S., Adobor, C., Broni, E., Ntiamoah, A., & Wilson, M. D. (2019). Molecular docking and dynamics simulation studies predict munc18b as a target of mycolactone: A plausible mechanism for granule exocytosis impairment in Buruli Ulcer Pathogenesis. Toxins, 11(3), 181. https://doi.org/10.3390/toxins11030181
  • Kwofie, S. K., Enninful, K. S., Yussif, J. A., Asante, L. A., Adjei, M., Kan-Dapaah, K., Tiburu, E. K., Mensah, W. A., Miller, W. A., Mosi, L., & Wilson, M. D. (2019). Molecular informatics studies of the iron-dependent regulator (ideR) reveal potential novel anti-mycobacterium ulcerans natural product-derived compounds. Molecules, 24(12), 2299. https://doi.org/10.3390/molecules24122299
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748.
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Leakey, R. R. (2001). Win: Win landuse strategies for Africa: 1. Building on experience with agroforests in Asia and Latin America. The International Forestry Review, 1–10.
  • Lemkul, J. (2019). From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [article v1. 0]. Living Journal of Computational Molecular Science, 1(1), 5068.
  • Li, W., Xu, C., Hao, C., Zhang, Y., Wang, Z., Wang, S., & Wang, W. (2020). Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Research, 177, 104714.
  • Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34–41. https://doi.org/10.1016/j.addr.2016.04.029
  • Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung Cancer, 5(9), 1315–1316. https://doi.org/10.1097/JTO.0b013e3181ec173d
  • Marin, M., Watson, T. L., Chaves, S. S., Civen, R., Watson, B. M., Zhang, J. X., Perella, D., Mascola, L., & Seward, J. F. (2008). Varicella among adults: Data from an active surveillance project, 1995–2005. The Journal of Infectious Diseases, 197(s2), S94–S100. https://doi.org/10.1086/522155
  • Martin, Y. C. (2005). A bioavailabilty score. Journal of Medicinal Chemistry, 48(9), 3164–3170. ACS Publications), https://doi.org/10.1021/jm0492002
  • Migliore, M. (2010). FV-100: The most potent and selective anti-varicella zoster virus agent reported to date. Antiviral Chemistry and Chemotherapy, 20(3), 107–115. https://doi.org/10.3851/IMP1472
  • Minai-Tehrani, D., Soheili, Z., & Yahyavi, E. (2015). Inhibition of microbial alkaline phosphatase by cimetidine; kinetics and molecular model of binding. Current Enzyme Inhibition, 11(1), 39–45. https://doi.org/10.2174/1573408011666150226231233
  • Mothana, R. A. A., Abdo, S. A. A., Hasson, S., Althawab, F. M. N., Alaghbari, S. A. Z., & Lindequist, U. (2010). Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some yenemi medicinal plants. Evidence-Based Complementary and Alternative Medicine : eCAM, 7(3), 323–330.
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594.
  • Osuagwu, G., & Eme, C. (2013). The phytochemical composition and antimicrobial activity of Dialium guineense, Vitex doniana and Dennettia tripetala leaves. Asian Journal of Natural Applied Sciences, 2(3), 69–81.
  • Park, C. S., Kim, D. S. S., & Kim, K. H. (2013). Varicella outbreak in the patients during group therapy: Seroprevalence in a Healthcare system during breakthrough varicella occurrence. Clinical and Experimental Vaccine Research, 2(2), 140–143. https://doi.org/10.7774/cevr.2013.2.2.140
  • Peele, K. A., Potla Durthi, C., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., Babu, D. J., Indira, M., Reddy, A. R., & Venkateswarulu, T. C. (2020). Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked, 19, 100345. https://doi.org/10.1016/j.imu.2020.100345
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072.
  • Prasanth, D., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., & Guntupalli, C. (2020). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure and Dynamics, 39, 1–15.
  • Sang, H., Huang, Y., Tian, Y., Liu, M., Chen, L., Li, L., Liu, S., & Yang, J. (2021). Multiple modes of action of myricetin in influenza A virus infection. Phytotherapy Research, 35(5), 2797-2806. https://doi.org/10.1002/ptr.7025
  • Schrodinger, L. (2010). The PyMOL molecular graphics system. Version, 1(5), 0.
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Selick, H. E., Beresford, A. P., & Tarbit, M. H. (2002). The emerging importance of predictive ADME simulation in drug discovery. Drug Discovery Today, 7(2), 109–116.
  • Sharma, A., Cooper, R., Bhardwaj, G., & Cannoo, D. S. (2021). The Genus Nepeta: Traditional uses, phytochemicals and pharmacological properties. Journal of Ethnopharmacology, 268, 113679.
  • Singh, M., Chandran, C., Sarwa, A., Kumar, A., Gupta, M., Raj, A., & Ratho, R. (2015). Outbreak of chickenpox in a Union Territory of North India. Indian Journal of Medical Microbiology, 33(4), 524–527. https://doi.org/10.4103/0255-0857.167335
  • Spadola, L., Novellino, E., Folkers, G., & Scapozza, L. (2003). Homology modelling and docking studies on Varicella Zoster Virus Thymidine kinase. European Journal of Medicinal Chemistry, 38(4), 413–419.
  • Stilinović, V., Horvat, G., Hrenar, T., Nemec, V., & Cinčić, D. (2017). Halogen and hydrogen bonding between (N‐halogeno)‐succinimides and pyridine derivatives in solution, the solid state and in silico. Chemistry - A European Journal, 23(22), 5244–5257. https://doi.org/10.1002/chem.201605686
  • Topalis, D., Gillemot, S., Snoeck, R., & Andrei, G. (2018). Thymidine kinase and protein kinase in drug-resistant herpesviruses: Heads of a Lernaean Hydra. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 37, 1–16.
  • Tort, A. (2013). A note on the electrostatic energy of two point charges. arXiv preprint arXiv:.
  • Trott, O., & Olson, A. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Turner, P. (2005). XMGRACE, version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, N., Chen, W., Zhu, L., Zhu, D., Feng, R., Wang, J., Zhu, B., Zhang, X., Chen, X., Liu, X., Yan, R., Ni, D., Zhou, G. G., Liu, H., Rao, Z., & Wang, X. (2020). Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein & Cell, 11(5), 366–373. https://doi.org/10.1007/s13238-020-00711-z
  • World Health Organization. (2002). The world health report 2002: reducing risks, promoting healthy life. World Health Organization.
  • Yaeghoobi, M., Frimayanti, N., Chee, C. F., Ikram, K. K., Najjar, B. O., Zain, S. M., Abdullah, Z., Wahab, H. A., & Rahman, N. A. (2016). QSAR, in silico docking and in vitro evaluation of chalcone derivatives as potential inhibitors for H1N1 virus neuraminidase. Medicinal Chemistry Research, 25(10), 2133–2142. https://doi.org/10.1007/s00044-016-1636-5
  • Yu, M.-S., Lee, J., Lee, J. M., Kim, Y., Chin, Y.-W., Jee, J.-G., Keum, Y.-S., & Jeong, Y.-J. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & Medicinal Chemistry Letters, 22(12), 4049–4054. https://doi.org/10.1016/j.bmcl.2012.04.081

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.