1,158
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

In silico approach to design a multi-epitopic vaccine candidate targeting the non-mutational immunogenic regions in envelope protein and surface glycoprotein of SARS-CoV-2

, & ORCID Icon
Pages 12948-12963 | Received 27 Feb 2021, Accepted 03 Sep 2021, Published online: 16 Sep 2021

References

  • Aalten, D. M. F., Groot, B. L., Findlay, J. B. C., Berendsen, H. J. C., & Amadei, A. A. (1997). Comparison of techniques for calculating protein essential dynamics. Journal of Computational Chemistry, 18(2), 169–181. https://doi.org/10.1002/(SICI)1096-987X(19970130)18:2<169::AID-JCC3>3.0.CO;2-T
  • Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science (New York, N.Y.), 297(5587), 1678–1683. https://doi.org/10.1126/science.1073950
  • Ashfaq, U. A., Saleem, S., Masoud, M. S., Ahmad, M., Nahid, N., Bhatti, R., Almatroudi, A., & Khurshid, M. (2021). Rational design of multi epitope-based subunit vaccine by exploring MERS-COV proteome: Reverse vaccinology and molecular docking approach. PLoS One, 16(2), e0245072. https://doi.org/10.1371/journal.pone.0245072
  • Ashour, H. M., Elkhatib, W. F., Rahman, M. M., & Elshabrawy, H. A. (2020). Insights into the recent 2019 Novel Coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens (Basel, Switzerland), 9(3), 186. https://doi.org/10.3390/pathogens9030186
  • Bhattacharya, M., Sharma, A. R., Patra, P., Ghosh, P., Sharma, G., Patra, B. C., Saha, R. P., Lee, S. S., & Chakraborty, C. (2020). A SARS-CoV-2 vaccine candidate: In-silico cloning and validation. Informatics in Medicine Unlocked, 20, 100394. https://doi.org/10.1016/j.imu.2020.100394
  • Biragyn, A., Coscia, M., Nagashima, K., Sanford, M., Young, H. A., & Olkhanud, P. (2008). Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-kappaB-dependent atypical death of APCs via activation of TNFR2. Journal of Leukocyte Biology, 83(4), 998–1008. https://doi.org/10.1189/jlb.1007700
  • Biswas, N. K., & Majumder, P. P. (2020). Analysis of RNA sequences of 3636 SARS-CoV-2 collected from 55 countries reveals selective sweep of one virus type. The Indian Journal of Medical Research, 151(5), 450–458. https://doi.org/10.4103/ijmr.IJMR_1125_20
  • Bourdette, D. N., Edmonds, E., Smith, C., Bowen, J. D., Guttmann, C. R., Nagy, Z. P., Simon, J., Whitham, R., Lovera, J., Yadav, V., Mass, M., Spencer, L., Culbertson, N., Bartholomew, R. M., Theofan, G., Milano, J., Offner, H., & Vandenbark, A. A. (2005). A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 11(5), 552–561. https://doi.org/10.1191/1352458505ms1225oa
  • Brandau, D. T., Jones, L. S., Wiethoff, C. M., Rexroad, J., & Middaugh, C. R. (2003). Thermal stability of vaccines. Journal of Pharmaceutical Sciences, 92(2), 218–231. https://doi.org/10.1002/jps.10296
  • Buchan, D., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research, 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297
  • Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7, 153. https://doi.org/10.1186/1471-2105-7-153
  • Caspar, D. L. (1995). Problems in simulating macromolecular movements. Structure (Structure), 3(4), 327–329. https://doi.org/10.1016/S0969-2126(01)00163-0
  • Chakraborty, C., Sharma, A. R., Sharma, G., Bhattacharya, M., Saha, R. P., & Lee, S. S. (2020). Extensive partnership, collaboration, and teamwork is required to stop the COVID-19 outbreak. Archives of Medical Research, 51(7), 728–730. https://doi.org/10.1016/j.arcmed.2020.05.021
  • Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(Web Server issue), W72–W76. https://doi.org/10.1093/nar/gki396
  • Clarage, J. B., Romo, T., Andrews, B. K., Pettitt, B. M., & Phillips, G. N. Jr(1995). A sampling problem in molecular dynamics simulations of macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 92(8), 3288–3292. https://doi.org/10.1073/pnas.92.8.3288
  • Cleemput, S., Dumon, W., Fonseca, V., Abdool Karim, W., Giovanetti, M., Alcantara, L. C., Deforche, K., & de Oliveira, T. (2020). Genome detective coronavirus typing tool for rapid identification and characterization of novel coronavirus genomes. Bioinformatics (Oxford, England), 36(11), 3552–3555. https://doi.org/10.1093/bioinformatics/btaa145
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14, 346 https://doi.org/10.1186/1471-2105-14-346
  • Dey, A. K., Malyala, P., & Singh, M. (2014). Physicochemical and functional characterization of vaccine antigens and adjuvants. Expert Review of Vaccines, 13(5), 671–685. https://doi.org/10.1586/14760584.2014.907528
  • Di Natale, C., La Manna, S., De Benedictis, I., Brandi, P., & Marasco, D. (2020). Perspectives in peptide-based vaccination strategies for syndrome coronavirus 2 pandemic. Frontiers in Pharmacology, 11, 578382. https://doi.org/10.3389/fphar.2020.578382
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP–A server for in silico prediction of allergens. BMC Bioinformatics, 14(S6), 4. https://doi.org/10.1186/1471-2105-14-S6-S4
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009). The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nature Reviews Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • Elfiky, A. A. (2021). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure & Dynamics, 39(9), 3204–3212. https://doi.org/10.1080/07391102.2020.1761882
  • Falk, K., Rötzschke, O., Stevanović, S., Jung, G., & Rammensee, H. G. (1991). Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature, 351(6324), 290–296. https://doi.org/10.1038/351290a0
  • Foged, C. (2011). Subunit vaccines of the future: The need for safe, customized and optimized particulate delivery systems. Therapeutic Delivery, 2(8), 1057–1077. https://doi.org/10.4155/tde.11.68
  • Garbuglia, A. R., Lapa, D., Sias, C., Capobianchi, M. R., & Del Porto, P. (2020). The use of both therapeutic and prophylactic vaccines in the therapy of papillomavirus disease. Frontiers in Immunology, 11, 188. https://doi.org/10.3389/fimmu.2020.00188
  • Garnier, J., Gibrat, J. F., & Robson, B. (1996). GOR method for predicting protein secondary structure from amino acid sequence. Methods in Enzymology, 266, 540–553. https://doi.org/10.1016/s0076-6879(96)66034-0
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • Goodwin, D., Simerska, P., & Toth, I. (2012). Peptides as therapeutics with enhanced bioactivity. Current Medicinal Chemistry, 19(26), 4451–4461. https://doi.org/10.2174/092986712803251548
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery Consortium., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957 https://doi.org/10.1371/journal.pone.0073957
  • Guy, B. (2007). The perfect mix: Recent progress in adjuvant research. Nature Reviews. Microbiology, 5(7), 505–517. https://doi.org/10.1038/nrmicro1681
  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–W388. https://doi.org/10.1093/nar/gkt458
  • Isabel, S., Graña-Miraglia, L., Gutierrez, J. M., Bundalovic-Torma, C., Groves, H. E., Isabel, M. R., Eshaghi, A., Patel, S. N., Gubbay, J. B., Poutanen, T., Guttman, D. S., & Poutanen, S. M. (2020). Evolutionary and structural analyses of SARS-CoV-2 D614G spike protein mutation now documented worldwide. Scientific Reports, 10(1), 14031.https://doi.org/10.1038/s41598-020-70827-z
  • Jiang, S., Du, L., & Shi, Z. (2020). An emerging coronavirus causing pneumonia outbreak in Wuhan, China: Calling for developing therapeutic and prophylactic strategies. Emerging Microbes & Infections, 9(1), 275–277. https://doi.org/10.1080/22221751.2020.1723441
  • Jiang, S., Hillyer, C., & Du, L. (2020). Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends in Immunology, 41(5), 355–359. https://doi.org/10.1016/j.it.2020.03.007
  • Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., & Nielsen, M. (2017). NetMHCpan-4.0: Improved peptide-MHC Class I interaction predictions integrating eluted ligand and peptide binding affinity data. Journal of Immunology, 199(9), 3360–3368. https://doi.org/10.4049/jimmunol.1700893
  • Kalli, K. R., Block, M. S., Kasi, P. M., Erskine, C. L., Hobday, T. J., Dietz, A., Padley, D., Gustafson, M. P., Shreeder, B., Puglisi-Knutson, D., Visscher, D. W., Mangskau, T. K., Wilson, G., & Knutson, K. L. (2018). Folate receptor alpha peptide vaccine generates immunity in breast and ovarian cancer patients. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(13), 3014–3025. https://doi.org/10.1158/1078-0432.CCR-17-2499
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 10895. https://doi.org/10.1038/s41598-020-67749-1
  • Kim, J., Yang, Y. L., Jang, S. H., & Jang, Y. S. (2018). Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virology Journal, 15(1), 124. https://doi.org/10.1186/s12985-018-1035-2
  • Kim, J., Yang, Y. L., Jang, S. H., & Jang, Y. S. (2018). Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virology Journal, 15(1), 124. https://doi.org/10.1186/s12985-018-1035-2
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297. https://doi.org/10.1093/nar/gks493
  • Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins, 81(12), 2159–2166. https://doi.org/10.1002/prot.24403
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Lam, T. T.-Y., Jia, N., Zhang, Y.-W., Shum, M. H.-H., Jiang, J.-F., Zhu, H.-C., Tong, Y.-G., Shi, Y.-X., Ni, X.-B., Liao, Y.-S., Li, W.-J., Jiang, B.-G., Wei, W., Yuan, T.-T., Zheng, K., Cui, X.-M., Li, J., Pei, G.-Q., Qiang, X., … Cao, W.-C. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815), 282–285. https://doi.org/10.1038/s41586-020-2169-0
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8, 424.https://doi.org/10.1186/1471-2105-8-424
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (New York, N.Y.), 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480
  • López, J. A., Weilenman, C., Audran, R., Roggero, M. A., Bonelo, A., Tiercy, J. M., Spertini, F., & Corradin, G. (2001). A synthetic malaria vaccine elicits a potent CD8(+) and CD4(+) T lymphocyte immune response in humans. Implications for vaccination strategies. European Journal of Immunology, 31(7), 1989–1998. https://doi.org/10.1002/1521-4141(200107)31:7 < 1989::aid-immu1989 > 3.0.co;2-m
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–W276. https://doi.org/10.1093/nar/gku339
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics (Oxford, England), 26(23), 2936–2943. https://doi.org/10.1093/bioinformatics/btq551
  • Maupetit, J., Derreumaux, P., & Tuffery, P. (2009). PEP-FOLD: An online resource for de novo peptide structure prediction. Nucleic Acids Research, 37(Web Server issue), W498–W503. https://doi.org/10.1093/nar/gkp323
  • Naveca, F., Nascimento, V., Souza, V., Corado, A., Nascimento, F., Silva, G., Costa, A., Duarte, D., Pessoa, K., & Gonçalves, L. (2021). Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein. Virological. Retrieved February 25, 2021 from https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/585.
  • Nielsen, M., & Lund, O. (2009). NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics, 10, 296 https://doi.org/10.1186/1471-2105-10-296
  • O’Hagan, D. T., MacKichan, M. L., & Singh, M. (2001). Recent developments in adjuvants for vaccines against infectious diseases. Biomolecular Engineering, 18(3), 69–85. https://doi.org/10.1016/S1389-0344(01)00101-0
  • Piccoli, L., Park, Y.-J., Tortorici, M. A., Czudnochowski, N., Walls, A. C., Beltramello, M., Silacci-Fregni, C., Pinto, D., Rosen, L. E., Bowen, J. E., Acton, O. J., Jaconi, S., Guarino, B., Minola, A., Zatta, F., Sprugasci, N., Bassi, J., Peter, A., De Marco, A., … Veesler, D. (2020). Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell, 183(4), 1024–1042.e21. https://doi.org/10.1016/j.cell.2020.09.037
  • Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514.https://doi.org/10.1186/1471-2105-9-514
  • Rahmani, A., Baee, M., Saleki, K., Moradi, S., & Nouri, H. R. (2021). Applying high throughput and comprehensive immunoinformatics approaches to design a trivalent subunit vaccine for induction of immune response against emerging human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 1–17. Advance online publication. https://doi.org/10.1080/07391102.2021.1876774
  • Rambaut, A., Loman, N., Pybus, O., Barclay, W., Barrett, J., Carabelli, A., Connor, T., Peacock, T., Robertson, D. L., & Volz, E. (2020). Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. COVID-19 Genomics Consortium UK (CoG-UK).
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rawi, R., Mall, R., Kunji, K., Shen, C. H., Kwong, P. D., & Chuang, G. Y. (2018). PaRSnIP: Sequence-based protein solubility prediction using gradient boosting machine. Bioinformatics (Oxford, England), 34(7), 1092–1098. https://doi.org/10.1093/bioinformatics/btx662
  • Reed, S. G., Bertholet, S., Coler, R. N., & Friede, M. (2009). New horizons in adjuvants for vaccine development. Trends in Immunology, 30(1), 23–32. https://doi.org/10.1016/j.it.2008.09.006
  • Sadat, S. M., Aghadadeghi, M. R., Yousefi, M., Khodaei, A., Sadat Larijani, M., & Bahramali, G. (2021). Bioinformatics analysis of SARS-cov-2 to approach an effective vaccine candidate against COVID-19. Molecular Biotechnology, 63(5), 389–409. https://doi.org/10.1007/s12033-021-00303-0 Epub 2021 Feb 24.
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Mahdevar, E., Ghahremani, F., Nezafat, N., & Modarressi, M. H. (2021). Efficacy of co-immunization with the DNA and peptide vaccines containing SYCP1 and ACRBP epitopes in a murine triple-negative breast cancer model. Human Vaccines & Immunotherapeutics, 17(1), 22–34. https://doi.org/10.1080/21645515.2020.1763693
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019). In silico analysis of synaptonemal complex protein 1 (SYCP1) and Acrosin Binding Protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359. https://doi.org/10.1007/s10989-018-9780-z
  • Saha, S., & Raghava, G. P. (2004). S. BcePred:Prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In G. Nicosia, V. Cutello, P. J. Bentley, & J. Timis (Eds.), ICARIS 2004, LNCS. 3239 (pp. 197–204). Springer.
  • Saha, S., & Raghava, G. P. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Samad, A., Ahammad, F., Nain, Z., Alam, R., Imon, R. R., Hasan, M., & Rahman, M. S. (2020). Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. Journal of Biomolecular Structure & Dynamics, 1–17. https://doi.org/10.1080/07391102.2020.1792347
  • Shen, X., Tang, H., McDanal, C., Wagh, K., Fischer, W., Theiler, J., Yoon, H., Li, D., Haynes, B. F., Sanders, K. O., Gnanakaran, S., Hengartner, N., Pajon, R., Smith, G., Glenn, G. M., Korber, B., & Montefiori, D. C. (2021). SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host & Microbe, 29(4), 529–539.e3. Volume Issue https://doi.org/10.1016/j.chom.2021.03.002
  • Steven, G. R., Fan-Chi, H., Darrick, C., & Mark, T. O. (2016). The science of vaccine adjuvants: Advances in TLR4 ligand adjuvants. Current Opinion in Immunology, 41, 85–90. https://doi.org/10.1016/j.coi.2016.06.007
  • Tahir Ul Qamar, M., Shahid, F., Aslam, S., Ashfaq, U. A., Aslam, S., Fatima, I., Fareed, M. M., Zohaib, A., & Chen, L. L. (2020). Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infectious Diseases of Poverty, 9(1), 132.https://doi.org/10.1186/s40249-020-00752-w
  • Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E. J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A. J., Engelbrecht, S., Van Zyl, G., … de Oliveira, T. (2021). Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 592(7854), 438–443. https://doi.org/10.1038/s41586-021-03402-9
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  • Thomsen, M., Lundegaard, C., Buus, S., Lund, O., & Nielsen, M. (2013). MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics, 65(9), 655–665. https://doi.org/10.1007/s00251-013-0714-9
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • Validi, M., Karkhah, A., Prajapati, V. K., & Nouri, H. R. (2018). Immuno-informatics based approaches to design a novel multi epitope-based vaccine for immune response reinforcement against Leptospirosis. Molecular Immunology, 104, 128–138. https://doi.org/10.1016/j.molimm.2018.11.005
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94(7), e00127–20. https://doi.org/10.1128/JVI.00127-20
  • Westerbeck, J. W., & Machamer, C. E. (2019). The Infectious bronchitis coronavirus envelope protein alters golgi pH to protect the spike protein and promote the release of infectious virus. Journal of Virology, 93(11), e00015–19. https://doi.org/10.1128/JVI.00015-19
  • WHO. (n.d.). https://covid19.who.int/
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Scientific Reports, 11(1), 3238. https://doi.org/10.1038/s41598-021-81749-9
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Zhang, W., Davis, B. D., Chen, S. S., Martinez, J. M. S., Plummer, J. T., & Vail, E. (2021). Emergence of a novel SARS-CoV-2 strain in Southern California, USA. medRxiv. https://doi.org/10.1101/2021.01.18.21249786.
  • Zheng, M., Karki, R., Williams, E. P., Yang, D., Fitzpatrick, E., Vogel, P., Jonsson, C. B., & Kanneganti, T.-D. (2021). TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nature Immunology, 22(7), 829–838. https://doi.org/10.1038/s41590-021-00937-x
  • Zhou, Y., Yang, Y., Huang, J., Jiang, S., & Du, L. (2019). Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain. Viruses, 11(1), 60. https://doi.org/10.3390/v11010060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.