288
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular modeling and dynamics studies of the synthetic small molecule agonists with GPR17 and P2Y1 receptor

, , , , ORCID Icon & ORCID Icon
Pages 12908-12916 | Received 22 May 2021, Accepted 02 Sep 2021, Published online: 20 Sep 2021

References

  • Barros, M. T., Doan, P., Kandhavelu, M., Jennings, B., & Balasubramaniam, S. (2021). Engineering calcium signaling of astrocytes for neural–molecular computing logic gates. Scientific Reports, 11(1), 595. https://doi.org/10.1038/s41598-020-79891-x
  • Becker, O. M., Marantz, Y., Shacham, S., Inbal, B., Heifetz, A., Kalid, O., Bar-Haim, S., Warshaviak, D., Fichman, M., & Noiman, S. (2004). G protein-coupled receptors: In silico, drug discovery in 3D. Proceedings of the National Academy of Sciences of the United States of America 101, 11304–11309. https://doi.org/10.1073/pnas.0401862101
  • Bharti, R., Yamini, Bhardwaj, V. K., Bal Reddy, C., Purohit, R., & Das, P. (2021). Benzosuberene-sulfone analogues synthesis from Cedrus deodara oil and their therapeutic evaluation by computational analysis to treat type 2 diabetes. Bioorganic Chemistry, 112, 104860. https://doi.org/10.1016/j.bioorg.2021.104860
  • Calebiro, D., Koszegi, Z., Lanoiselée, Y., Miljus, T., & O’Brien, S. (2021). G protein-coupled receptor-G protein interactions: A single-molecule perspective. Physiological Reviews, 101(3), 857-906. https://doi.org/10.1152/physrev.00021.2020
  • Ciana, P., Fumagalli, M., Trincavelli, M. L., Verderio, C., Rosa, P., Lecca, D., Ferrario, S., Parravicini, C., Capra, V., Gelosa, P., & Abbracchio, M. P. (2006). The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO Journal, 25(19), 4615-27. https://doi.org/10.1038/sj.emboj.7601341
  • Deshaies, R. J. (2020). Multispecific drugs herald a new era of biopharmaceutical innovation. Nature, 580(7803), 329-338. https://doi.org/10.1038/s41586-020-2168-1
  • Doan, P., Nguyen, P., Murugesan, A., Subramanian, K., Konda Mani, S., Kalimuthu, V., Abraham, B. G., Stringer, B. W., Balamuthu, K., Yli-Harja, O., & Kandhavelu, M. (2021). Targeting orphan g protein-coupled receptor 17 with T0 ligand impairs glioblastoma growth. Cancers, 13(15), :3773. https://doi.org/10.3390/cancers13153773
  • Eargle, J., Wright, D., & Luthey-Schulten, Z. (2006). Multiple Alignment of protein structures and sequences for VMD. Bioinformatics, 22(4), 504-6. https://doi.org/10.1093/bioinformatics/bti825
  • Fiser, A., & Šali, A. (2003). MODELLER: Generation and refinement of homology-based protein structure models. Methods in Enzymology, 374, 461–491. https://doi.org/10.1016/S0076-6879(03)74020-8
  • Fredriksson, R., Lagerström, M. C., Lundin, L. G., & Schiöth, H. B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63(6), 1256–1272. https://doi.org/10.1124/mol.63.6.1256
  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377-89. https://doi.org/10.1021/ci800324m
  • Heise, C. E., O’Dowd, B. F., Figueroa, D. J., Sawyer, N., Nguyen, T., Im, D. S., Stocco, R., Bellefeuille, J. N., Abramovitz, M., Cheng, R., & Evans, J. F. (2000). Characterization of the human cysteinyl leukotriene 2 receptor. Journal of Biological Chemistry, 275(39), 30531-6. https://doi.org/10.1074/jbc.M003490200
  • Hennen, S., Wang, H., Peters, L., Merten, N., Simon, K., Spinrath, A., Blättermann, S., Akkari, R., Schrage, R., Schröder, R., & Kostenis, E. (2013). Decoding signaling and function of the orphan g protein-coupled receptor GPR17 with a small-molecule agonist. Science Signaling, 6(298), ra93. https://doi.org/10.1126/scisignal.2004350
  • Hess, B., Kutzner, C., & Van Der Spoel, D. & (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical, 4(3), 435–47.
  • Howard, A. D., McAllister, G., Feighner, S. D., Liu, Q., Nargund, R. P., Van der Ploeg, L. H. T., & Patchett, A. A. (2001). Orphan G-protein-coupled receptors and natural ligand discovery. Trends in Pharmacological Sciences, 22(3), 132-40. https://doi.org/10.1016/S0165-6147(00)01636-9
  • Isberg, V., Mordalski, S., Munk, C., Rataj, K., Harpsøe, K., Hauser, A. S., Vroling, B., Bojarski, A. J., Vriend, G., & Gloriam, D. E. (2016). GPCRdb: An information system for G protein-coupled receptors. Nucleic Acids Research, 44(D1), D356-64. https://doi.org/10.1093/nar/gkv1178
  • Kenakin, T. (2010). A holistic view of GPCR signaling. Nature Biotechnology, 28(9), 928–929. https://doi.org/10.1038/nbt0910-928
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kooistra, A. J., Mordalski, S., Pándy-Szekeres, G., Esguerra, M., Mamyrbekov, A., Munk, C., Keserű, G. M., & Gloriam, D. E. (2021). GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Research, 49(D1), D335-D343. https://doi.org/10.1093/nar/gkaa1080
  • Kulandaisamy, A., Binny Priya, S., Sakthivel, R., Tarnovskaya, S., Bizin, I., Hönigschmid, P., Frishman, D., & Gromiha, M. M. (2018). MutHTP: Mutations in human transmembrane proteins. Bioinformatics, 34(13), 2325-2326. https://doi.org/10.1093/bioinformatics/bty054
  • Kumar Bhardwaj, V., Purohit, R., & Kumar, S. (2021). Himalayan bioactive molecules as potential entry inhibitors for the human immunodeficiency virus. Food Chemistry, 347, 128932. https://doi.org/10.1016/j.foodchem.2020.128932
  • Latorraca, N. R., Venkatakrishnan, A. J., & Dror, R. O. (2017). GPCR dynamics: Structures in motion. Chemical Reviews, 117(1), 139–155. https://doi.org/10.1021/acs.chemrev.6b00177
  • Lecca, D., Trincavelli, M., Gelosa, P., Sironi, L., & Ciana, P. (2008). The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One, 3(10), e3579. https://doi.org/10.1371/journal.pone.0003579
  • Maekawa, A., Balestrieri, B., & Austen, K. (2009). GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11685–11690.
  • Maiti, R., Van Domselaar, G. H., Zhang, H., & Wishart, D. S. (2004). SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Research, 32(Web Server issue), W590-4. https://doi.org/10.1093/nar/gkh477
  • Marucci, G., Lammi, C., Buccioni, M., Dal Ben, D., Lambertucci, C., Amantini, C., Santoni, G., Kandhavelu, M., Abbracchio, M. P., Lecca, D., & Cristalli, G. (2011). Comparison and optimization of transient transfection methods at human astrocytoma cell line 1321N1. Analytical Biochemistry, 414(2), 300-2. https://doi.org/10.1016/j.ab.2011.02.028
  • Miller, R. L., Thompson, A. A., Trapella, C., Guerrini, R., Malfacini, D., Patel, N., Han, G. W., Cherezov, V., Caló, G., Katritch, V., & Stevens, R. C. (2015). The importance of ligand-receptor conformational pairs in stabilization: spotlight on the N/OFQ G protein-coupled receptor. Structure, 23(12), 2291-2299. https://doi.org/10.1016/j.str.2015.07.024
  • Morales, P., Hurst, D. P., & Reggio, P. H. (2017). Methods for the development of in silico GPCR models. Methods in Enzymology, 593, 405-448. https://doi.org/10.1016/bs.mie.2017.05.005
  • Mutharasu, G., Murugesan, A., Konda Mani, S., Yli-Harja, O., & Kandhavelu, M. (2020). Transcriptomic analysis of glioblastoma multiforme providing new insights into GPR17 signaling communication. Journal of Biomolecular Structure and Dynamics, 3, 1–14. https://doi.org/10.1080/07391102.2020.1841029
  • Nagarajan, S., Qian, Z. Y., Marimuthu, P., Alkayed, N. J., Kaul, S., & Barnes, A. P. (2021). Mapping the molecular architecture required for lipid-binding pockets using a subset of established and orphan G-protein coupled receptors. Journal of Chemical Information and Modeling, 61(7), 3442-3452. https://doi.org/10.1021/acs.jcim.1c00335
  • Nguyen, P., Doan, P., Rimpilainen, T., Konda Mani, S., Murugesan, A., Yli-Harja, O., Candeias, N. R. & Kandhavelu, M. (2021). Synthesis and preclinical validation of novel indole derivatives as a GPR17 agonist for glioblastoma treatment. Journal of Medicinal Chemistry, 64(15), 10908-10918. https://doi.org/10.1021/acs.jmedchem.1c00277
  • Panagiotopoulos, A. A., Papachristofi, C., Kalyvianaki, K., Malamos, P., Theodoropoulos, P. A., Notas, G., Calogeropoulou, T., Castanas, E., & Kampa, M. (2020). A simple open source bioinformatic methodology for initial exploration of GPCR ligands’ agonistic/antagonistic properties. Pharmacology Research & Perspectives, 8(4), e00600. https://doi.org/10.1002/prp2.600
  • Parravicini, C., & Ranghino, G. (2008). GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors. BMC 9, 263.
  • Pei, J., Kim, B. H., & Grishin, N. V. (2008). PROMALS3D: A tool for multiple protein sequence and structure alignments. Nucleic Acids Research, 36(7), 2295–2300. https://doi.org/10.1093/nar/gkn072
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9, 923. https://doi.org/10.3389/fphar.2018.00923
  • Saravanan, K. M., & Selvaraj, S. (2012). Search for identical octapeptides in unrelated proteins: Structural plasticity revisited. Biopolymers, 98(1), 11-26. https://doi.org/10.1002/bip.21676
  • Saravanan, K. M., & Selvaraj, S. (2017). Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. Journal of Biological Physics, 43(2), 265–278. https://doi.org/10.1007/s10867-017-9451-x
  • Saravanan, K. M., Palanivel, S., Yli-Harja, O., & Kandhavelu, M. (2017). Identification of novel GPR17-agonists by structural bioinformatics and signaling activation. International Journal of Biological Macromolecules, 106, 901–907. https://doi.org/10.1016/j.ijbiomac.2017.08.088
  • Saravanan, K. M., Peng, Y., & Wei, Y. (2019). Systematic analysis of NO regular secondary structural regions (NORS) in membrane and non-membrane proteins. Journal of Biomolecular Structure and Dynamics, 38(1), 268-274. https://doi.org/10.1080/07391102.2019.1566092
  • Saravanan, K. M., Zhang, H., & Wei, Y. (2020). Identifying native and non-native membrane protein loops by using stabilizing energetic terms of three popular force fields. Current Chinese Science, 1(1), 14–21. https://doi.org/10.2174/2665997201999200729165146
  • Sharma, P., Kumari, S., Sharma, J., Purohit, R., & Singh, D. (2021). Hesperidin interacts with CREB-BDNF signaling pathway to suppress pentylenetetrazole-induced convulsions in zebrafish. Frontiers in Pharmacology, 11, 607797. https://doi.org/10.3389/fphar.2020.607797
  • Singh, R., Bhardwaj, V. K., Sharma, J., Das, P., & Purohit, R. (2021a). Discovery and in silico evaluation of aminoaryl benzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics, 113(1 Pt 2), 707-715. https://doi.org/10.1016/j.ygeno.2020.10.001
  • Singh, R., Bhardwaj, V. K., Sharma, J., Das, P., & Purohit, R. (2021b). Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: An in silico exploration. Journal of Biomolecular Structure and Dynamics, 22, 1–9. https://doi.org/10.1080/07391102.2021.1900918
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367 [PMC][22824207
  • Stenkamp, R. E., Teller, D. C., & Palczewski, K. (2002). Crystal structure of rhodopsin: A G-protein-coupled receptor. ChemBioChem., 3(10), 963–967. https://doi.org/10.1002/1439-7633(20021004)3:10 < 963::AID-CBIC963 > 3.0.CO;2-9
  • Suresh, M. X., Gromiha, M. M., & Suwa, M. (2015). Development of a machine learning method to predict membrane protein-ligand binding residues using basic sequence information. Advances in Bioinformatics, 2015, 843030 https://doi.org/10.1155/2015/843030
  • Woods, L. T., Forti, K. M., Shanbhag, V. C., Camden, J. M., & Weisman, G. A. (2021). P2Y receptors for extracellular nucleotides: Contributions to cancer progression and therapeutic implications. Biochemical Pharmacology, 187, 114406. https://doi.org/10.1016/j.bcp.2021.114406
  • Yatsuzuka, A., Hori, A., Kadoya, M., Matsuo-Takasaki, M., Kondo, T., & Sasai, N. (2018). GPR17 is an essential component of the negative feedback loop of the sonic hedgehog signalling pathway in neural tube development. BioRxiv, 424598. https://doi.org/10.1101/424598
  • Zhang, D., Gao, Z. G., Zhang, K., Kiselev, E., Crane, S., Wang, J., Paoletta, S., Yi, C., Ma, L., Zhang, W., & Wu, B. (2015). Two disparate ligand-binding sites in the human P2Y1 receptor. Nature, 520(7547), 317-21. https://doi.org/10.1038/nature14287
  • Zhang, H., Liao, L., Saravanan, K. M., Yin, P., & Wei, Y. (2019). DeepBindRG: A deep learning based method for estimating effective protein-ligand affinity. PeerJ, 7, e7362 https://doi.org/10.7717/peerj.7362
  • Zhang, H., Saravanan, K. M., Lin, J., Liao, L., Ng, J. T.-Y., Zhou, J., & Wei, Y. (2020). DeepBindPoc: A deep learning method to rank ligand binding pockets using molecular vector representation. PeerJ, 8, e8864. https://doi.org/10.7717/peerj.8864
  • Zhang, H., Yang, Y., Li, J., Wang, M., Saravanan, K. M., Wei, J., Tze-Yang Ng, J., Tofazzal Hossain, M., Liu, M., Zhang, H., & Wei, Y. (2020). A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro. PLoS Computational Biology, 16(12), e1008489. https://doi.org/10.1371/journal.pcbi.1008489
  • Zhang, J., Yang, J., Jang, R., & Zhang, Y. (2015). GPCR-I-TASSER: A hybrid approach to g protein-coupled receptor structure modeling and the application to the human genome. Structure, 23(8), 1538-1549. https://doi.org/10.1016/j.str.2015.06.007
  • Zhao, S., Wu, B., & Stevens, R. C. (2019). Advancing chemokine GPCR structure based drug discovery. Structure, 27(3):405-408. https://doi.org/10.1016/j.str.2019.02.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.