351
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Leishmanicidal and cytotoxic activity of essential oil from the fruit peel of Myrciaria floribunda (H. West ex Willd.) O. Berg: Molecular docking and molecular dynamics simulations of its major constituent onto Leishmania enzyme targets

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 13001-13016 | Received 29 Jan 2021, Accepted 03 Sep 2021, Published online: 11 Oct 2021

References

  • Andrade, M. A., dos Santos Azevedo, C., Motta, F. N., dos Santos, M. L., Silva, C. L., de Santana, J. M., & Bastos, I. M. (2016). Essential oils: In vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition. BMC Complementary and Alternative Medicine, 16(1), 444–448. https://doi.org/10.1186/s12906-016-1401-9
  • Badirzadeh, A., Heidari-Kharaji, M., Fallah-Omrani, V., Dabiri, H., Araghi, A., & Salimi Chirani, A. (2020). Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Neglected Tropical Diseases, 14(1), e0007843. https://doi.org/10.1371/journal.pntd.0007843
  • Bazana, M. T., Codevilla, C. F., & Menezes, C. R. (2019). Nanoencapsulation of bioactive compounds: Challenges and perspectives. Current Opinion in Food Science, 26, 47–56. https://doi.org/10.1016/j.cofs.2019.03.005
  • Bharadwaj, K. K., Sarkar, T., Ghosh, A., Baishya, D., Rabha, B., Panda, M. K., & Pati, S. (2021). Macrolactin A as a novel inhibitory agent for SARS-CoV-2 Mpro: Bioinformatics approach. Applied Biochemistry and Biotechnology, 2021, 1–24. https://doi.org/10.1007/s12010-021-03608-7
  • Boschi, D., Pippione, A. C., Sainas, S., & Lolli, M. L. (2019). Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. European Journal of Medicinal Chemistry, 183, 111681. https://doi.org/10.1016/j.ejmech.2019.111681
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., & Salmon, J. K. (2006). Scalable algorithms for molecular dynamics simulations oncommodity clusters [Paper presentation]. SC’06: Proceedings of the2006 ACM/IEEE Conference on Supercomputing, 43. https://doi.org/10.1109/SC.2006.54
  • Chow, E., Rendleman, C. A., Bowers, K. J., Dror, R. O., Hughes, D. H., Gullingsrud, J., Sacerdoti, F. D., & Shaw, D. E. (2008). Desmond performance on a cluster of multicore processors. DE Shaw Research Technical Report DESRES/TR-2008-01. http://deshawresearch.com.
  • Chowdhary, S. J., Chowdhary, A. M. I. T., & Kashaw, S. U. S. H. I. L. (2016). Macrophage targeting: A strategy for leishmaniasis specific delivery. International Journal of Pharmacy and Pharmaceutical Sciences, 8(11), 16–26.
  • Christensen, S. M., Belew, A. T., El-Sayed, N. M., Tafuri, W. L., Silveira, F. T., & Mosser, D. M. (2019). Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Neglected Tropical Diseases, 13(3), e0007152. https://doi.org/10.1371/journal.pntd.0007152
  • Corona, P., Gibellini, F., Cavalli, A., Saxena, P., Carta, A., Loriga, M., Luciani, R., Paglietti, G., Guerrieri, D., Nerini, E., Gupta, S., Hannaert, V., Michels, P. A. M., Ferrari, S., & Costi, P. M. (2012). Structure-based selectivity optimization of piperidine-pteridine derivatives as potent Leishmania pteridine reductase inhibitors. Journal of Medicinal Chemistry, 55(19), 8318–8329. https://doi.org/10.1021/jm300563f
  • Correa, M. S., Schwambach, J., Mann, M. B., Frazzon, J., & Frazzon, A. P. G. (2019). Antimicrobial and antibiofilm activity of the essential oil from dried leaves of Eucalyptus staigeriana. Arquivos do Instituto Biológico, 86, 1–8 https://doi.org/10.1590/1808-1657000202018
  • Costa, J. M., Garcia, A. M., Rêbelo, J. M. M., Guimarães, K. M., Guimarães, R. M., & Nunes, P. (2003). [Fatal case during treatment of american tegumentary leishmaniasis with sodium stibogluconate bp 88 (shandong xinhua)]. Revista da Sociedade Brasileira de Medicina Tropical, 36(2), 295–298. https://doi.org/10.1590/s0037-86822003000200013
  • Costa, W. K., Oliveira, J. R. S. d., Oliveira, A. M. d., Santos, I. B. d S., Cunha, R. X. d., Freitas, A. F. S. d., Silva, J. W. L. M. d., Silva, V. B. G., Aguiar, J. C. R. d O. F. d., Silva, A. G. d., Navarro, D. M. d A. F., Lima, V. L. d M., & Silva, M. V. d. (2020). Essential oil from Eugenia stipitata McVaugh leaves has antinociceptive, anti-inflammatory and antipyretic activities without showing toxicity in mice. Industrial Crops and Products, 144, 112059. https://doi.org/10.1016/j.indcrop.2019.112059
  • Czech, A., Zarycka, E., Yanovych, D., Zasadna, Z., Grzegorczyk, I., & Kłys, S. (2020). Mineral content of the pulp and peel of various citrus fruit cultivars. Biological Trace Element Research, 193(2), 555–563. https://doi.org/10.1007/s12011-019-01727-1
  • da Silva Barbosa, D. C., Holanda, V. N., de Assis, C. R. D., de Oliveira Farias de Aguiar, J. C. R., doNascimento, P. H., da Silva, W. V., do Amaral Ferraz Navarro, D. M., Silva, M. V. d., de Menezes Lima, V. L., & dos Santos Correia, M. T. (2020). Chemical composition and acetylcholinesterase inhibitory potential, in silico, of Myrciaria floribunda (H. West ex Willd.) O. Berg fruit peel essential oil. Industrial Crops and Products, 151, 112372. https://doi.org/10.1016/j.indcrop.2020.112372
  • da Silva, A. D., Dos Santos, J. A., Machado, P. A., Alves, L. A., Laque, L. C., de Souza, V. C., Coimbra, E. S., & Capriles, P. V. S. Z. (2019). Insights about resveratrol analogs against trypanothione reductase of Leishmania braziliensis: Molecular modeling, computational docking and in vitro antileishmanial studies. Journal of Biomolecular Structure & Dynamics, 37(11), 2960–2969. https://doi.org/10.1080/07391102.2018.1502096
  • da Silva, V. P., Alves, C. C. F., Miranda, M. L. D., Bretanha, L. C., Balleste, M. P., Micke, G. A., Silveira, E. V., Martins, C. H. G., Ambrosio, M. A. L. V., de Souza Silva, T., Tavares, D. C., Magalhães, L. G., Silva, F. G., & Egea, M. B. (2018). Chemical composition and in vitro leishmanicidal, antibacterial and cytotoxic activities of essential oils of the Myrtaceae family occurring in the Cerrado biome. Industrial Crops and Products, 123, 638–645. https://doi.org/10.1016/j.indcrop.2018.07.033
  • de Azevedo, M. M. L., Cascaes, M. M., Guilhon, G. M. S. P., Andrade, E. H. A., Zoghbi, M. d G. B., da Silva, J. K. R., Santos, L. S., & da Silva, S. H. M. (2019). Lupane triterpenoids, antioxidant potential and antimicrobial activity of Myrciaria floribunda (H. West ex Willd.) O. Berg. Natural Product Research, 33(4), 506–515. https://doi.org/10.1080/14786419.2017.1402311
  • Díaz, J. G., Arranz, J. C. E., Batista, D. D. G. J., Fidalgo, L. M., Costa, J. D. L. V., Macedo, M. B., & Cos, P. (2018). Antileishmanial potentialities of Croton linearis leaf essential oil. Natural Product Communications, 13(5), 1934578X1801300. https://doi.org/10.1177/1934578X1801300527
  • Dumas, C., Ouellette, M., Tovar, J., Cunningham, M. L., Fairlamb, A. H., Tamar, S., Olivier, M., & Papadopoulou, B. (1997). Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. The EMBO Journal, 16(10), 2590–2598. https://doi.org/10.1093/emboj/16.10.2590
  • Durazzini, A. M. S., Machado, C. H. M., Fernandes, C. C., Willrich, G. B., Crotti, A. E. M., Candido, A. C. B. B., Magalhães, L. G., Squarisi, I. S., Ribeiro, A. B., Tavares, D. C., Martins, C. H. G., & Miranda, M. L. D. (2019). Eugenia pyriformis Cambess: A species of the Myrtaceae family with bioactive essential oil. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2019.1669031
  • Ferreira, F. B. P., Herculano Ramos-Milaré, Á. C. F., Gonçalves, J. E., Lazarin-Bidóia, D., Nakamura, C. V., Sugauara, R. R., Fernandez, C. M. M., Gazim, Z. C., Demarchi, I. G., Silveira, T. G. V., & Lonardoni, M. V. C. (2020). Campomanesia xanthocarpa (Mart.) O. Berg essential oil induces antileishmanial activity and remodeling of the cytoplasm organelles. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2020.1827401
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gervazoni, L. F., Barcellos, G. B., Ferreira-Paes, T., & Almeida-Amaral, E. E. (2020). Use of natural products in leishmaniasis chemotherapy: An overview. Frontiers in Chemistry, 8, 579891. https://doi.org/10.3389/fchem.2020.579891
  • Gourley, D. G., Schüttelkopf, A. W., Leonard, G. A., Luba, J., Hardy, L. W., Beverley, S. M., & Hunter, W. N. (2001). Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nature Structural Biology, 8(6), 521–525.
  • Hefnawy, A., Berg, M., Dujardin, J. C., & De Muylder, G. (2017). Exploiting knowledge on Leishmania drug resistance to support the quest for new drugs. Trends in Parasitology, 33(3), 162–174. https://doi.org/10.1016/j.pt.2016.11.0031.
  • Hennia, A., Nemmiche, S., Guerreiro, A., Faleiro, M. L., Antunes, M. D., Aazza, S., & Miguel, M. G. (2019). Antioxidant and antiproliferative activities of Myrtus communis L. essential oils from different Algerian regions. Journal of Essential Oil Bearing Plants, 22(6), 1488. https://doi.org/10.1080/0972060X.2019.1687335
  • Herrera-Acevedo, C., Flores-Gaspar, A., Scotti, L., Mendonça-Junior, F. J. B., Scotti, M. T., & Coy-Barrera, E. (2021). Identification of Kaurane-type diterpenes as inhibitors of Leishmania pteridine reductase I. Molecules (Basel, Switzerland), 26(11), 3076. https://doi.org/10.3390/molecules26113076
  • Herrera-Acevedo, C., Perdomo-Madrigal, C., Muratov, E. N., Scotti, L., & Scotti, M. T. (2021). Discovery of alternative chemotherapy options for Leishmaniasis through computational studies of Asteraceae. ChemMedChem., 16(8), 1234. https://doi.org/10.1002/cmdc.202000862
  • Holanda, V. N., Silva, W. V. d., Nascimento, P. H. d., Silva, S. R. B., Cabral Filho, P. E., Assis, S. P. d O., Silva, C. A. d., Oliveira, R. N. d., Figueiredo, R. C. B. Q. d., & Lima, V. L. d M. (2020). Antileishmanial activity of 4-phenyl-1-[2-(phthalimido-2-yl)ethyl]-1H-1,2,3-triazole (PT4) derivative on Leishmania amazonensis and Leishmania braziliensis: In silico ADMET, in vitro activity, docking and molecular dynamic simulations. Bioorganic Chemistry, 105, 104437. https://doi.org/10.1016/j.bioorg.2020.104437
  • Ilari, A., Baiocco, P., Messori, L., Fiorillo, A., Boffi, A., Gramiccia, M., Di Muccio, T., & Colotti, G. (2012). A gold-containing drug against parasitic polyamine metabolism: The X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids, 42(2-3), 803–811. https://doi.org/10.1007/s00726-011-0997-9
  • Jain, V., & Jain, K. (2018). Molecular targets and pathways for the treatment of visceral leishmaniasis. Drug Discovery Today, 23(1), 161–170. https://doi.org/10.1016/j.drudis.2017.09.006
  • Jihene, A., Rym, E., Ines, K. J., Majdi, H., Olfa, T., & Abderrabba, M. (2020). Antileishmanial potential of propolis essential oil and its synergistic combination with Amphotericin B. Natural Product Communications, 15(1), 1934578X1989956–1934578X1989958. https://doi.org/10.1177/1934578X19899566
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kim, C., Bu, J. H., Lee, J. S., Hyun, C., & Lee, N. H. (2014). Chemical compositions and anti-inflammatory activities of essential oils from Aster spathulifolius and Vitex rotundifolia maxim. Journal of Applied Pharmaceutical Science, 4(10), 12–15. https://doi.org/10.7324/JAPS.2014.401003
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (2006). PROCHECK: Validation of protein-structure coordinates. International Tables for Crystallography, 25(2), 722–725.
  • Lima, M. V. N. D., Oliveira, R. Z. D., Lima, A. P. D., Cerino, D. A., & Silveira, T. G. V. (2007). American cutaneous leishmaniasis with fatal outcome during pentavalent antimoniate treatment. Anais Brasileiros de Dermatologia, 82(3), 269–271. https://doi.org/10.1590/S0365-05962007000300010
  • López-Camacho, E., Godoy, M. J. G., García-Nieto, J., Nebro, A. J., & Aldana-Montes, J. F. (2015). Solving molecular flexible docking problems with metaheuristics: A comparative study. Applied Soft Computing, 28, 379–393. https://doi.org/10.1016/j.asoc.2014.10.049
  • Macêdo, C. G., Fonseca, M. Y. N., Caldeira, A. D., Castro, S. P., Pacienza-Lima, W., Borsodi, M. P. G., Sartoratto, A., da Silva, M. N., Salgado, C. G., Rossi-Bergmann, B., & Castro, K. C. F. (2020). Leishmanicidal activity of Piper marginatum Jacq. from Santarém-PA against Leishmania amazonensis. Experimental Parasitology, 210, 107847. https://doi.org/10.1016/j.exppara.2020.107847
  • Macedo-Silva, S. T., Visbal, G., Urbina, J. A., De Souza, W., & Rodrigues, J. C. F. (2015). Potent in vitro antiproliferative synergism of combinations of ergosterol biosynthesis inhibitors against Leishmania amazonensis. Antimicrobial Agents and Chemotherapy, 59(10), 6402–6418. https://doi.org/10.1128/AAC.01150-15
  • Mancianti, F., & Ebani, V. V. (2020). Biological activity of essential oils. Molecules, 25(3), 678. https://doi.org/10.3390/molecules25030678
  • Marques, S. A., Merlotto, M. R., Ramos, P. M., & Marques, M. E. A. (2019). American tegumentary leishmaniasis: Severe side effects of pentavalent antimonial in a patient with chronic renal failure. Anais brasileiros de dermatologia, 94(3), 355–357. https://doi.org/10.1590/abd1806-4841.20198388
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nose-Hoover chains-the canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Menezes, J. P. B., Guedes, C. E. S., Petersen, A. L. D. O. A., Fraga, D. B. M., & Veras, P. S. T. (2015). Advances in development of new treatment for leishmaniasis. BioMed Research International, 2015, 815023. https://doi.org/10.1155/2015/815023
  • Monzote, L., Geroldinger, G., Tonner, M., Scull, R., De Sarkar, S., Bergmann, S., Bacher, M., Staniek, K., Chatterjee, M., Rosenau, T., & Gille, L. (2018). Interaction of ascaridole, carvacrol, and caryophyllene oxide from essential oil of Chenopodium ambrosioides L. with mitochondria in Leishmania and other eukaryotes. Phytotherapy Research: PTR, 32(9), 1729–1740. https://doi.org/10.1002/ptr.6097
  • Moreira, R. R. D., Santos, A. G. d., Carvalho, F. A., Perego, C. H., Crevelin, E. J., Crotti, A. E. M., Cogo, J., Cardoso, M. L. C., & Nakamura, C. V. (2019). Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Revista do Instituto de Medicina Tropical de São Paulo, 61, 1-7. http://dx.doi.org/10.1590/s1678-9946201961033
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mukherjee, S., Moitra, S., Xu, W., Hernandez, V., & Zhang, K. (2020). Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLoS Pathogens, 16(8), e1008810. https://doi.org/10.1371/journal.ppat.1008810
  • Okwor, I., & Uzonna, J. (2016). Social and economic burden of human leishmaniasis. The American Journal of Tropical Medicine and Hygiene, 94(3), 489–493. https://doi.org/10.4269/ajtmh.15-0408
  • Oliveira, D. M., Furtado, F. B., Gomes, A. A. S., Belut, B. R., Nascimento, E. A., Morais, S. A. L., Martins, C. H. G., Santos, V. C. O., da Silva, C. V., Teixeira, T. L., Cunha, L. C. S., Oliveira, A. d., & de Aquino, F. J. T. (2020). Chemical constituents and antileishmanial and antibacterial activities of essential oils from Scheelea phalerata. ACS Omega, 5(3), 1363–1370. https://doi.org/10.1021/acsomega.9b01962
  • Oliveira, V. C., Moura, D. M., Lopes, J. A., de Andrade, P. P., da Silva, N. H., & Figueiredo, R. C. (2009). Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitology Research, 104(5), 1053–1059. https://doi.org/10.1007/s00436-008-1288-6
  • Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/s12551-016-0247-1
  • Pandey, R. K., Verma, P., Sharma, D., Bhatt, T. K., Sundar, S., & Prajapati, V. K. (2016). High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 83, 141–152. https://doi.org/10.1016/j.biopha.2016.06.010
  • Pinto, E. G., Santos, I. O., Schmidt, T. J., Borborema, S. E., Ferreira, V. F., Rocha, D. R., & Tempone, A. G. (2014). Potential of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against Leishmania (L.) infantum: biological activity and structure-activity relationships . PloS One, 9(8), e105127. https://doi.org/10.1371/journal.pone.0105127
  • Razzaghi-Asl, N., Ebadi, A., Shahabipour, S., & Gholamin, D. (2020). Identification of a potential SARS-CoV2 inhibitor via molecular dynamics simulations and amino acid decomposition analysis. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1797536
  • Ríos, Y. K., Otero, A. C., Muñoz, D. L., Echeverry, M., Robledo, S. M., & Yepes, M. A. (2008). Actividad citotóxica y leishmanicida in vitro del aceite esencial de manzanilla (Matricaria chamomilla). Revista Colombiana de Ciencias Químico-Farmacéuticas, 37(2), 200–211.
  • Romero, A. H., & López, S. E. (2017). In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets. Journal of Molecular Graphics & Modelling, 76, 313–329. https://doi.org/10.1016/j.jmgm.2017.07.013
  • Russell, D. G., & Talamas-Rohana, P. (1989). Leishmania and the macrophage: A marriage of inconvenience. Immunology Today, 10(10), 328–333. https://doi.org/10.1016/0167-5699(89)90188-6
  • Saidani, F., Giménez, R., Aubert, C., Chalot, G., Betrán, J. A., & Gogorcena, Y. (2017). Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. Journal of Food Composition and Analysis, 62, 126–133. https://doi.org/10.1016/j.jfca.2017.04.015
  • Sharma, N., Shukla, A. K., Das, M., & Dubey, V. K. (2012). Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitology Research, 110(1), 341–348. https://doi.org/10.1007/s00436-011-2498-x
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Sousa, J. K. T., Antinarelli, L. M. R., Mendonça, D. V. C., Lage, D. P., Tavares, G. S. V., Dias, D. S., Ribeiro, P. A. F., Ludolf, F., Coelho, V. T. S., Oliveira-da-Silva, J. A., Perin, L., Oliveira, B. A., Alvarenga, D. F., Chávez-Fumagalli, M. A., Brandão, G. C., Nobre, V., Pereira, G. R., Coimbra, E. S., & Coelho, E. A. F. (2019). A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis. Parasitology International, 73, 101966. https://doi.org/10.1016/j.parint.2019.101966
  • Souza, L. I. O., Bezzera-Silva, P. C., Navarro, D. M. D. A. F., Silva, A. G., Santos Correia, M. T., Silva, M. V., & Figueiredo, R. C. B. Q. (2017). The chemical composition and trypanocidal activity of volatile oils from Brazilian Caatinga plants. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 96, 1055–1064. https://doi.org/10.1016/j.biopha.2017.11.121
  • Sundar, S., Chakravarty, J., & Meena, L. P. (2019). Leishmaniasis: Treatment, drug resistance and emerging therapies. Expert Opinion on Orphan Drugs, 7(1), 1–10. https://doi.org/10.1080/21678707.2019.1552853
  • Taheri, A. R., Sabouri Rad, S., & Molkara, S. (2019). Systemic treatments of Leishmaniasis: A narrative review. Reviews in Clinical Medicine, 6(3), 91–97. https://doi.org/10.22038/rcm.2019.42632.1287
  • Tietbohl, L. A. C., Mello, C. B., Silva, L. R., Dolabella, I. B., Franco, T. C., Enríquez, J. J. S., Santos, M. G., Fernandes, C. P., Machado, F. P., Mexas, R., Azambuja, P., Araújo, H. P., Moura, W., Ratcliffe, N. A., Feder, D., Rocha, L., & Gonzalez, M. S. (2020). Green insecticide against Chagas disease: Effects of essential oil from Myrciaria floribunda (Myrtaceae) on the development of Rhodnius prolixus nymphs. Journal of Essential Oil Research, 32(1), 1–11. https://doi.org/10.1080/10412905.2019.1631894
  • Tietbohl, L. A., Lima, B. G., Fernandes, C. P., Santos, M. G., Silva, F. E., Denardin, E. L., & Rocha, L. (2012). Comparative study and anticholinesterasic evaluation of essential oils from leaves, stems and flowers of Myrciaria floribunda (H. West ex Willd.) O. Berg. Latin American Journal of Pharmacy, 31(4), 637–641.
  • Tiuman, T. S., Ueda-Nakamura, T., Cortez, D. A. G., Dias Filho, B. P., Morgado-Díaz, J. A., de Souza, W., & Nakamura, C. V. (2005). Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrobial Agents and Chemotherapy, 49(1), 176–182. https://doi.org/10.1128/AAC.49.11.176–182.2005.
  • Toukmaji, A., & Board, J. (1996). Ewald summation techniques in perspective: A survey. Computer Physics Communications, 95(2-3), 73–92. https://doi.org/10.1016/0010-4655(96)00016-1
  • Turcano, L., Torrente, E., Missineo, A., Andreini, M., Gramiccia, M., Di Muccio, T., Genovese, I., Fiorillo, A., Harper, S., Bresciani, A., Colotti, G., & Ilari, A. (2018). Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. PLoS Negl Trop Dis, 12(11), e0006969. https://doi.org/10.1371/journal.pntd.0006969
  • Ueda-Nakamura, T., Mendonça-Filho, R. R., Morgado-Díaz, J. A., Maza, P. K., Filho, B. P. D., Cortez, D. A. G., Alviano, D. S., Rosa, M. S. S., Lopes, A. H. C. S., Alviano, C. S., & Nakamura, C. V. (2006). Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitology International, 55(2), 99–105. https://doi.org/10.1016/j.parint.2005.10.006
  • Valero, N. N. H., & Uriarte, M. (2020). Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: A systematic review. Parasitology Research, 119(2), 365–384. https://doi.org/10.1007/s00436-019-06575-5
  • Vargas, J. A. R., López, A. G., Pérez, Y., Cos, P., & Froeyen, M. (2019). In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei. Parasitology Research, 118(5), 1533–1548. https://doi.org/10.1007/s00436-019-06206-z
  • Verma, R. K., Prajapati, V. K., Verma, G. K., Chakraborty, D., Sundar, S., Rai, M., Dubey, V. K., & Singh, M. S. (2012). Molecular docking and in vitro antileishmanial evaluation of chromene-2-thione analogues. ACS Medicinal Chemistry Letters, 3(3), 243–247. https://doi.org/10.1021/ml200280r
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • World Heald Organization. (2020). Global Health Observatory (GHO) data| Leishmaniasis. www.who.int/gho/neglected_diseases/leishmaniasis/en/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.