164
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Anti-HIV and anti-HCV small molecule protease inhibitors in-silico repurposing against SARS-CoV-2 Mpro for the treatment of COVID-19

ORCID Icon, , &
Pages 12848-12862 | Received 03 Jul 2020, Accepted 29 Aug 2021, Published online: 27 Sep 2021

References

  • Abraham, M. J., van der Spoel, D., Lindahl, E., Hess, B., & The GROMACS Development Team. (2015). GROMACS User Manual version 5.1.1. www.gromacs.org
  • Alamri, M. A., Tahir Ul Qamar, M., Mirza, M. U., Bhadane, R., Alqahtani, S. M., Muneer, I., Froeyen, M., & Salo-Ahen, O. M. H. (2021). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro. Journal of Biomolecular Structure & Dynamics, 39(13), 4936–4948. https://doi.org/10.1080/07391102.2020.1782768
  • Al-Khafaji, K., Al-Duhaidahawi, D., & Taskin Tok, T. (2021). Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(9), 3387–3395. https://doi.org/10.1080/07391102.2020.1764392
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., … Lane, H. C. (2020). Remdesivir for the treatment of covid-19 – Final report. New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/NEJMoa2007764
  • Bello, M., Martínez-Muñoz, A., & Balbuena-Rebolledo, I. (2020). Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA. Journal of Molecular Modeling, 26(12), 340. https://doi.org/10.1007/s00894-020-04600-4
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572
  • Boreak, N. (2021). Small molecule "silmitasertib" repurposed as inhibitor of transforming growth factor beta 1 for the development of therapeutics for oral submucous fibrosis. BioMed Research International, 2021, 6631848. https://doi.org/10.1155/2021/6631848
  • Cheatham, T. E., Miller, J. L., Fox, T., Darden, T. A., & Kollman, P. A. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle mesh ewald method leads to stable trajectories of DNA, RNA, and proteins. Journal of the American Chemical Society, 117(14), 4193–4194. https://doi.org/10.1021/ja00119a045
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
  • Collier, A. C., Coombs, R. W., Schoenfeld, D. A., Bassett, R. L., Timpone, J., Baruch, A., Jones, M., Facey, K., Whitacre, C., McAuliffe, V. J., Friedman, H. M., Merigan, T. C., Reichman, R. C., Hooper, C., & Corey, L. (1996). Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. New England Journal of Medicine, 334(16), 1011–1017. https://doi.org/10.1056/NEJM199604183341602
  • Dierynck, I., Van Marck, H., Van Ginderen, M., Jonckers, T. H. M., Nalam, M. N. L., Schiffer, C. A., Raoof, A., Kraus, G., & Picchio, G. (2011). TMC310911, a novel human immunodeficiency virus type 1 protease inhibitor, shows in vitro an improved resistance profile and higher genetic barrier to resistance compared with current protease inhibitors. Antimicrobial Agents and Chemotherapy, 55(12), 5723–5731. https://doi.org/10.1128/AAC.00748-11
  • Elfiky, A. A. (2020). Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592. https://doi.org/10.1016/j.lfs.2020.117592
  • Galindez, G., Matschinske, J., Rose, T. D., Sadegh, S., Salgado-Albarrán, M., Späth, J., Baumbach, J., & Pauling, J. K. (2021). Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nature Computational Science, 1(1), 33–41. https://doi.org/10.1038/s43588-020-00007-6
  • Gorbalenya, A. E., Baker, S. C., & Baric, R. S. (2020). The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536–544. https://doi.org/10.1038/s41564-020-0695-z.
  • Hall, D. C., Jr., & Ji, H. F. (2020). A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Medicine and Infectious Disease, 35, 101646. https://doi.org/10.1016/j.tmaid.2020.101646
  • Hegyi, A., & Ziebuhr, J. (2002). Conservation of substrate specificities among coronavirus main proteases. The Journal of General Virology, 83(Pt 3), 595–599. https://doi.org/10.1099/0022-1317-83-3-595
  • https://go.drugbank.com
  • https://pubchem.ncbi.nlm.nih.gov
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu, Y., Zhu, C., Hu, T., Du, X., Duan, Y., Yu, J., Yang, X., Yang, X., Yang, K., Liu, X., Guddat, L. W., Xiao, G., Zhang, L., Yang, H., & Rao, Z. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology, 27(6), 529–532. https://doi.org/10.1038/s41594-020-0440-6
  • Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
  • Johansson, M. U., Zoete, V., Michielin, O., & Guex, N. (2012). Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics, 13, 173. https://doi.org/10.1186/1471-2105-13-173
  • Keating, G. M. (2016). Elbasvir/Grazoprevir: First global approval. Drugs, 76(5), 617–624. https://doi.org/10.1007/s40265-016-0558-3
  • Khan, F. I., Lai, D., Anwer, R., Azim, I., & Khan, M. K. A. (2020). Identifying novel sphingosine kinase 1 inhibitors as therapeutics against breast cancer. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 172–186. https://doi.org/10.1080/14756366.2019.1692828
  • Kumar, S., Zhi, K., Mukherji, A., & Gerth, K. (2020). Repurposing antiviral protease inhibitors using extracellular vesicles for potential therapy of COVID-19. Viruses, 12(5), 486. https://doi.org/10.3390/v12050486
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962., . https://doi.org/10.1021/ci500020m
  • Kuzmanic, A., & Zagrovic, B. (2010). Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophysical Journal, 98(5), 861–871. https://doi.org/10.1016/j.bpj.2009.11.011
  • Kwong, A. D., Kauffman, R. S., Hurter, P., & Mueller, P. (2011). Discovery and development of telaprevir: An NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nature Biotechnology, 29(11), 993–1003. https://doi.org/10.1038/nbt.2020
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
  • Markowitz, M., Saag, M., Powderly, W. G., Hurley, A. M., Hsu, A., Valdes, J. M., Henry, D., Sattler, F., La Marca, A., & Leonard, J. M. (1995). A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. The New England Journal of Medicine, 333(23), 1534–1539. https://doi.org/10.1056/NEJM199512073332204
  • Martin, S. (2020). Homology models of Wuhan coronavirus 3CLpro protease. ChemRxiv. https://doi.org/10.26434/chemrxiv.11637294
  • McKee, D. L., Sternberg, A., Stange, U., Laufer, S., & Naujokat, C. (2020). Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacological Research, 157, 104859. https://doi.org/10.1016/j.phrs.2020.104859
  • Molla, A., Mo, H., Vasavanonda, S., Han, L., Lin, C. T., Hsu, A., & Kempf, D. J. (2002). In vitro antiviral interaction of lopinavir with other protease inhibitors. Antimicrobial Agents and Chemotherapy, 46(7), 2249–2253. https://doi.org/10.1128/AAC.46.7.2249-2253.2002
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mueller, B. U., Sleasman, J., Nelson, R. P., Smith, S., Deutsch, P. J., Ju, W., Steinberg, S. M., Balis, F. M., Jarosinski, P. F., Brouwers, P., Mistry, G., Winchell, G., Zwerski, S., Sei, S., Wood, L. V., Zeichner, S., & Pizzo, P. A. Jr. (1998). A phase I/II study of the protease inhibitor indinavir in children with HIV infection. Pediatrics, 102(1), 101–109. https://doi.org/10.1542/peds.102.1.101
  • Oroguchi, T., & Nakasako, M. (2016). Changes in hydration structure are necessary for collective motions of a multi-domain protein. Scientific Reports, 6, 26302. https://doi.org/10.1038/srep26302
  • Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S.-H. (2016). An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461
  • Poordad, F., McCone, J., Bacon, B. R., Bruno, S., Manns, M. P., Sulkowski, M. S., Jacobson, I. M., Reddy, K. R., Goodman, Z. D., Boparai, N., DiNubile, M. J., Sniukiene, V., Brass, C. A., Albrecht, J. K., & Bronowicki, J.-P. (2011). Boceprevir for untreated chronic HCV genotype 1 infection. New England Journal of Medicine, 364(13), 1195–1206. https://doi.org/10.1056/NEJMoa1010494
  • Robinson, B. S., Riccardi, K. A., Gong, Y. F., Guo, Q., Stock, D. A., Blair, W. S., Terry, B. J., Deminie, C. A., Djang, F., Colonno, R. J., & Lin, P. F. (2000). BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents. Antimicrobial Agents and Chemotherapy, 44(8), 2093–2099. https://doi.org/10.1128/AAC.44.8.2093-2099.2000
  • Rodier, F., Bahadur, R. P., Chakrabarti, P., & Janin, J. (2005). Hydration of protein-protein interfaces. Proteins: Structure, Function, and Bioinformatics, 60(1), 36–45. https://doi.org/10.1002/prot.20478
  • Rosenquist, Å., Samuelsson, B., Johansson, P.-O., Cummings, M. D., Lenz, O., Raboisson, P., Simmen, K., Vendeville, S., de Kock, H., Nilsson, M., Horvath, A., Kalmeijer, R., de la Rosa, G., & Beumont-Mauviel, M. (2014). Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor. Journal of Medicinal Chemistry, 57(5), 1673–1693. https://doi.org/10.1021/jm401507s
  • Sadler, B. M., Hanson, C. D., Chittick, G. E., Symonds, W. T., & Roskell, N. S. (1999). Safety and pharmacokinetics of amprenavir (141W94), a human immunodeficiency virus (HIV) type 1 protease inhibitor, following oral administration of single doses to HIV-infected adults. Antimicrobial Agents and Chemotherapy, 43(7), 1686–1692. https://doi.org/10.1128/AAC.43.7.1686
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9, 923. https://doi.org/10.3389/fphar.2018.00923
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sisay, M. (2020). 3CLpro inhibitors as a potential therapeutic option for COVID-19: Available evidence and ongoing clinical trials. Pharmacological Research, 156, 104779. https://doi.org/10.1016/j.phrs.2020.104779
  • Sultan, A., Ali, R., Sultan, T., Ali, S., Khan, N. J., & Parganiha, A. (2021). Circadian clock modulating small molecules repurposing as inhibitors of SARS-CoV-2 Mpro for pharmacological interventions in COVID-19 pandemic. Chronobiology International, 38(7), 971–985. https://doi.org/10.1080/07420528.2021.1903027
  • Surleraux, D. L. N. G., Tahri, A., Verschueren, W. G., Pille, G. M. E., de Kock, H. A., Jonckers, T. H. M., Peeters, A., De Meyer, S., Azijn, H., Pauwels, R., de Bethune, M.-P., King, N. M., Prabu-Jeyabalan, M., Schiffer, C. A., & Wigerinck, P. B. T. P. (2005). Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. Journal of Medicinal Chemistry, 48(6), 1813–1822. https://doi.org/10.1021/jm049560p
  • Taylor, J. G., Zipfel, S., Ramey, K., Vivian, R., Schrier, A., Karki, K. K., Katana, A., Kato, D., Kobayashi, T., Martinez, R., Sangi, M., Siegel, D., Tran, C. V., Yang, Z.-Y., Zablocki, J., Yang, C. Y., Wang, Y., Wang, K., Chan, K., … Link, J. O. (2019). Discovery of the pan-genotypic hepatitis C virus NS3/4A protease inhibitor voxilaprevir (GS-9857): A component of Vosevi®. Bioorganic & Medicinal Chemistry Letters, 29(16), 2428–2436. https://doi.org/10.1016/j.bmcl.2019.03.037
  • Turner, S. R., Strohbach, J. W., Tommasi, R. A., Aristoff, P. A., Johnson, P. D., Skulnick, H. I., Dolak, L. A., Seest, E. P., Tomich, P. K., Bohanon, M. J., Horng, M. M., Lynn, J. C., Chong, K. T., Hinshaw, R. R., Watenpaugh, K. D., Janakiraman, M. N., & Thaisrivongs, S. (1998). Tipranavir (PNU-140690): A potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. Journal of Medicinal Chemistry, 41(18), 3467–3476. https://doi.org/10.1021/jm9802158
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • World Health Organization. (2020). Clinical management of COVID-19: Interim guidance. https://reliefweb.int/sites/reliefweb.int/files/resources/2005_clinical_management_of_covid-19-v7.pdf
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yadav, D. K., & Kumar, S., S. (2018). Molecular insights into the interaction of RONS and Thieno[3,2-c]pyran analogs with SIRT6/COX-2: A molecular dynamics study. Scientific Reports, 8(1), 4777. https://doi.org/10.1038/s41598-018-22972-9
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100
  • Zhang, K. E., Wu, E., Patick, A. K., Kerr, B., Zorbas, M., Lankford, A., Kobayashi, T., Maeda, Y., Shetty, B., & Webber, S. (2001). Circulating metabolites of the human immunodeficiency virus protease inhibitor nelfinavir in humans: Structural identification, levels in plasma, and antiviral activities. Antimicrobial Agents and Chemotherapy, 45(4), 1086–1093. https://doi.org/10.1128/AAC.45.4.1086-1093.2001
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhong, H., Wang, Y., Zhang, Z.-L., Liu, Y.-X., Le, K.-J., Cui, M., Yu, Y.-T., Gu, Z.-C., Gao, Y., & Lin, H.-W. (2020). Efficacy and safety of current therapeutic options for COVID-19 – Lessons to be learnt from SARS and MERS epidemic: A systematic review and meta-analysis. Pharmacological Research, 157, 104872. https://doi.org/10.1016/j.phrs.2020.104872
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.