1,439
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potent inhibitors against transmembrane serine protease 2 for developing therapeutics against SARS-CoV-2

, , , , , , , , & show all
Pages 13049-13061 | Received 24 Jan 2021, Accepted 08 Sep 2021, Published online: 30 Sep 2021

References

  • Adinsoft, S. (2010). XLSTAT-software, version 10. Addinsoft.
  • Alam, S., & Khan, F. (2017). 3D-QSAR studies on Maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Scientific Reports, 7(1), 1-13. https://doi.org/10.1038/s41598-017-06131-0
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(W1), W537-W541.https://doi.org/10.1093/NAR/GKS375
  • Apweiler, R. (2009). The universal protein resource (UniProt) in 2010. Nucleic Acids Research, 38(Suppl. 1), 142–148. https://doi.org/10.1093/nar/gkp846
  • Artemova, S., Jaillet, L., & Redon, S. (2016). Automatic molecular structure perception for the universal force field. Journal of Computational Chemistry, 37(13), 1191–1205. https://doi.org/10.1002/jcc.24309
  • Banks, W. A. (2009). Characteristics of compounds that cross the blood-brain barrier. BMC Neurology, 9(Suppl. 1), 5–9. https://doi.org/10.1186/1471-2377-9-S1-S3
  • Berhanu, W. M., Pillai, G. G., Oliferenko, A. A., & Katritzky, A. R. (2012). Quantitative structure-activity/property relationships: The ubiquitous links between cause and effect. ChemPlusChem, 77(7), 507–517. https://doi.org/10.1002/cplu.201200038
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica. Section D, Biological Crystallography, 58(Pt 6 No 1), 899–907. https://doi.org/10.1107/s0907444902003451
  • Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Winkler, M., Schneider, H., Hofmann-Winkler, H., Thiel, V., & Pohlmann, S. (2013). TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. Journal of Virology, 87(11), 6150–6160. https://doi.org/10.1128/JVI.03372-12
  • Bertram, S., Heurich, A., Lavender, H., Gierer, S., Danisch, S., Perin, P., Lucas, J. M., Nelson, P. S., Pöhlmann, S., & Soilleux, E. J. (2012). Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One, 7(4), e35876. https://doi.org/10.1371/journal.pone.0035876
  • Bestle, D., Heindl, M. R., Limburg, H., Pilgram, O., Moulton, H., Stein, D. A., Hardes, K., Eickmann, M., Dolnik, O., & Rohde, C. (2020). TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Science Alliance, 3(9), e202000786.https://doi.org/10.26508/lsa.202000786
  • Darden, T., Perera, L., Li, L., & Lee, P. (1999). New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7(3), R55–R60. https://doi.org/10.1016/S0969-2126(99)80033-1
  • Dickson, C. J., Madej, B. D., Skjevik, Å. A., Betz, R. M., Teigen, K., Gould, I. R., & Walker, R. C. (2014). Lipid14: The amber lipid force field. Journal of Chemical Theory and Computation, 10(2), 865–879. https://doi.org/10.1021/ct4010307
  • Dirar, A. I., Waddad, A. Y., Mohamed, M. A., Mohamed, M. S., Osman, W. J., Mohammed, M. S., Elbadawi, M. A. A., & Hamdoun, S. (2016). In silico pharmacokinetics and molecular docking of three leads isolated from Tarconanthus camphoratus L. International Journal of Pharmacy and Pharmaceutical Sciences, 8(5), 71–77.
  • Fakayode, S. O., Busch, K. W., & Busch, M. A. (2009). Chemometric approach to chiral recognition using molecular spectroscopy. In Encyclopedia of analytical chemistry. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027318.a9082
  • Fakayode, S. O., Mitchell, B. S., & Pollard, D. A. (2014). Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship. Talanta, 126, 151–156. https://doi.org/10.1016/j.talanta.2014.03.037
  • Glowacka, I., Bertram, S., Muller, M. A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Tsegaye, T. S., He, Y., Gnirss, K., Niemeyer, D., Schneider, H., Drosten, C., & Pohlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of Virology, 85(9), 4122–4134. https://doi.org/10.1128/JVI.02232-10
  • Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L. M., Samborskiy, D. V., Sidorov, I. A., Sola, I., & Ziebuhr, J. (2020). The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536–544. https://doi.org/10.1038/s41564-020-0695-z
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(SUPPL. 2), W368-W371. https://doi.org/10.1093/nar/gki464
  • Gunasekaran, K., Ramakrishnan, C., & Balaram, P. (1996). Disallowed Ramachandran conformations of amino acid residues in protein structures. Journal of Molecular Biology, 264(1), 191–198. https://doi.org/10.1006/jmbi.1996.0633
  • Hempel, T., Raich, L., Olsson, S., Azouz, N. P., Klingler, A. M., Hoffmann, M., Pöhlmann, S., Rothenberg, M. E., & Noé, F. (2021). Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat. Chemical Science, 12(3), 983–992. https://doi.org/10.1039/D0SC05064D
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Hoffmann, M., Schroeder, S., Kleine-Weber, H., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrobial agents and chemotherapy, 64(6), e00754-20. https://doi.org/10.1128/AAC.00754-20
  • Hussain, M., Jabeen, N., Amanullah, A., Baig, A. A., Aziz, B., Shabbir, S., Raza, F., & Uddin, N. (2020). Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: Conformation and intermolecular interactions. AIMS Microbiology, 6(3), 350–360. https://doi.org/10.3934/microbiol.2020021
  • Irwin, J. J., Gaskins, G., Sterling, T., Mysinger, M. M., & Keiser, M. J. (2018). Predicted biological activity of purchasable chemical space. Journal of Chemical Information and Modeling, 58(1), 148–164. https://doi.org/10.1021/acs.jcim.7b00316
  • Islam, J., Khan, A. M., Parves, R., & Hossain, N. (2019). Prediction of deleterious non-synonymous SNPs of human STK11 gene by combining algorithms, molecular docking, and molecular dynamics simulation. Scientific Reports, 1, 16. https://doi.org/10.1038/s41598-019-52308-0
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A., Al, Hossain, M. N., Ali, M. A., & Halim, M. A. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 39(9), 3213–3224. https://doi.org/10.1080/07391102.2020.1761883
  • Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., & Nagata, N. (2019). TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. Journal of Virology, 93(6), 1–15. https://doi.org/10.1128/JVI.01815-18
  • Jaimes, J. A., André, N. M., Chappie, J. S., Millet, J. K., & Whittaker, G. R. (2020). Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. Journal of Molecular Biology, 432(10), 3309–3325. https://doi.org/10.1016/j.jmb.2020.04.009
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Kim, M. O., Nichols, S. E., Wang, Y., & McCammon, J. A. (2013). Effects of histidine protonation and rotameric states on virtual screening of M. tuberculosis RmlC. Journal of Computer-Aided Molecular Design, 27(3), 235–246. https://doi.org/10.1007/s10822-013-9643-9
  • Krieger, E.,Darden, T.,Nabuurs, S. B.,Finkelstein, A., &Vriend, G. (2004). Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins, 57(4), 678–683. https://doi.org/10.1002/prot.20251 15390263
  • Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007. https://doi.org/10.1002/jcc.23899
  • Krieger, E., Nielsen, J. E., Spronk, C. A. E. M., & Vriend, G. (2006). Fast empirical pKa prediction by Ewald summation. Journal of Molecular Graphics & Modelling, 25(4), 481–486. https://doi.org/10.1016/j.jmgm.2006.02.009
  • Kumar, V., Dhanjal, J. K., Bhargava, P., Kaul, A., Wang, J., Zhang, H., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1775704
  • Laskowski, R. A., Chistyakov, V. V., & Thornton, J. M. (2005). PDBsum more: New summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Research, 33(Database issue), D266–D268. https://doi.org/10.1093/nar/gki001
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Liu, C.-H., Chen, X.-Y., Qin, P.-W., Qi, Z.-Q., Ji, M.-S., Liu, X.-Y., Babu, P. V., Li, X.-H., & Cui, Z.-N. (2017). Synthesis, fungicidal activity, and structure activity relationship of β-acylaminocycloalkylsulfonamides against botrytis cinerea. Scientific Reports, 7(1), 42096. https://doi.org/10.1038/srep42096
  • Luco, J. M., & Ferretti, F. H. (1997). QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. Journal of Chemical Information and Modeling, 37(2), 392–401. https://doi.org/10.1021/ci960487o
  • Martens, H., & Nï, T. (1992). Multivariate calibration. John Wiley & Sons.
  • Meng, T., Cao, H., Zhang, H., Kang, Z., Xu, D., Gong, H., Wang, J., Li, Z., Cui, X., Xu, H., Wei, H., Pan, X., Zhu, R., Xiao, J., Zhou, W., Cheng, L., & Liu, J. (2020). The transmembrane serine protease inhibitors are potential antiviral drugs for 2019-nCoV targeting the insertion sequence-induced viral infectivity enhancement. BioRxiv.https://doi.org/10.1101/2020.02.08.926006
  • Misra, S., Saini, M., Ojha, H., Sharma, D., & Sharma, K. (2017). Pharmacophore modelling, atom-based 3D-QSAR generation and virtual screening of molecules projected for mPGES-1 inhibitory activity. SAR and QSAR in Environmental Research, 28(1), 17–39. https://doi.org/10.1080/1062936X.2016.1273971
  • Nisha, C. M., Kumar, A., Vimal, A., Bai, B. M., Pal, D., & Kumar, A. (2016). Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. Journal of Molecular Graphics & Modelling, 65, 100–107. https://doi.org/10.1016/j.jmgm.2016.03.001
  • Onufriev, A. V., & Alexov, E. (2013). Protonation and pK changes in protein-ligand binding. Quarterly Reviews of Biophysics, 46(2), 181–209. https://doi.org/10.1017/S0033583513000024
  • Petukh, M., Stefl, S., & Alexov, E. (2013). The role of protonation states in ligand-receptor recognition and binding. Current Pharmaceutical Design, 19(23), 4182–4190. https://doi.org/10.2174/1381612811319230004
  • Shrimp, J. H., Kales, S. C., Sanderson, P. E., Simeonov, A., Shen, M., & Hall, M. D. (2020). An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. ACS Pharmacology & Translational Science, 3(5), 997–1007. https://doi.org/10.1021/acsptsci.0c00106
  • Singh, N., Decroly, E., Khatib, A.-M., & Villoutreix, B. O. (2020). Structure-based drug repositioning over the human TMPRSS2 protease domain: Search for chemical probes able to repress SARS-CoV-2 Spike protein cleavages. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 153, 105495. https://doi.org/10.1016/j.ejps.2020.105495
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15-ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Team, R. C. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria. Retrieved December 12 from http://www.R-project.org/.
  • Trott, O., &Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334 19499576
  • van Zundert, G. C. P., & Bonvin, A. M. J. J. (2014). Modeling protein–protein complexes using the HADDOCK webserver modeling protein complexes with HADDOCK. In Protein structure prediction (pp. 163–179). Springer. https://doi.org/10.1007/978-1-4939-0366-5_12
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein-small ligand complexes: the PRODIGY-LIG web server . Bioinformatics (Oxford, England), 35(9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281-292.https://doi.org/10.1016/j.cell.2020.02.058
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wickham, H. (2008). Applied spatial data analysis with r. In Applied Spatial Data Analysis with R. Springer. https://doi.org/10.1007/978-0-387-78171-6
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Suppl. 2), 407–410. https://doi.org/10.1093/nar/gkm290
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yamamoto, M., Matsuyama, S., Li, X., Takeda, M., Kawaguchi, Y., Inoue, J., & Matsuda, Z. (2016). Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrobial Agents and Chemotherapy, 60(11), 6532–6539. https://doi.org/10.1128/AAC.01043-16
  • Yuan, M., Wu, N. C., Zhu, X., Lee, C.-C D., So, R. T. Y., Lv, H., Mok, C. K. P., & Wilson, I. A. (2020). A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science (New York, N.Y.), 368(6491), 630–633.https://doi.org/10.1101/2020.03.13.991570.
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412. https://doi.org/10.1126/science.abb3405
  • Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/nar/gki524
  • Zorn, D., Lin, V. S. Y., Pruski, M., & Gordon, M. S. (2008). An interface between the universal force field and the effective fragment potential method. The Journal of Physical Chemistry. B, 112(40), 12753–12760. https://doi.org/10.1021/jp8049729

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.