248
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An effort to find new α-amylase inhibitors as potent antidiabetics compounds based on indole-based-thiadiazole analogs

ORCID Icon, , , , , , , ORCID Icon, , , & show all
Pages 13103-13114 | Received 01 Apr 2021, Accepted 12 Sep 2021, Published online: 27 Sep 2021

References

  • Sarafroz, M., Khatoon, Y., Ahmad, N., Amir, M., Salahuddin, S., & Hyder Pottoo, F. (2019). Synthesis, characterization and anticonvulsant activity of novel fused 1, 2, 4-triazolo-1, 3, 4-thiadiazoles. Oriental Journal of Chemistry, 35(1), 64–70. https://doi.org/10.13005/ojc/350107
  • Adamson, R., & Swenson, E. R. (2017). Acetazolamide use in severe chronic obstructive pulmonary disease. Pros and cons. Annals of the American Thoracic Society, 14(7), 1086–1093.
  • Alomari, M., Taha, M., Rahim, F., Selvaraj, M., Iqbal, N., Chigurupati, S., Hussain, S., Uddin, N., Almandil, N. B., Nawaz, M., Khalid Farooq, R., & Khan, K. M. (2021). Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study. Bioorganic Chemistry, 108, 104638. https://doi.org/10.1016/j.bioorg.2021.104638
  • Baharudin, M. S., Taha, M., Imran, S., Ismail, N. H., Rahim, F., Javid, M. T., Khan, K. M., & Ali, M. (2017). Synthesis of indole analogs as potent β-glucuronidase inhibitors. Bioorganic Chemistry, 72, 323–332. https://doi.org/10.1016/j.bioorg.2017.05.005
  • Bhat, K. S., Poojary, B., Prasad, D. J., Naik, P., & Holla, B. S. (2009). Synthesis and antitumor activity studies of some new fused 1,2,4-triazole derivatives carrying 2,4-dichloro-5-fluorophenyl moiety . European Journal of Medicinal Chemistry, 44(12), 5066–5070. https://doi.org/10.1016/j.ejmech.2009.09.010
  • Case, D., Ben-Shalom, I., Brozell, S., Cerutti, D., Cheatham Iii, T., Cruzeiro, V., Darden, T., Duke, R., Ghoreishi, D., & Gilson, M. (2018). AMBER 2018. University of California.
  • Charitos, G., Trafalis, D. T., Dalezis, P., Potamitis, C., Sarli, V., Zoumpoulakis, P., & Camoutsis, C. (2019). Synthesis and anticancer activity of novel 3, 6-disubstituted 1, 2, 4-triazolo. Arabian Journal of Chemistry, 12(8), 4784–4794. https://doi.org/10.1016/j.arabjc.2016.09.015
  • Cheng, A. Y., & Fantus, I. G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ : Canadian Medical Association Journal = Journal de L'Association Medicale Canadienne, 172(2), 213–226. https://doi.org/10.1503/cmaj.1031414
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Enanga, B., Ariyanayagam, M. R., Stewart, M. L., & Barrett, M. P. (2003). Activity of megazol, a trypanocidal nitroimidazole, is associated with DNA damage. Antimicrobial Agents and Chemotherapy, 47(10), 3368–3370. https://doi.org/10.1128/AAC.47.10.3368-3370.2003
  • Gomha, S. M., Edress, M. M., Muhammad, Z. A., Gaber, H. M., Amin, M. M., & Matar, I. K. (2019). Synthesis under microwave irradiation and molecular docking of some novel bioactive thiadiazoles. Mini Reviews in Medicinal Chemistry, 19(5), 437–447. https://doi.org/10.2174/1389557518666180329122317
  • Imran, S., Taha, M., Ismail, N. H., Kashif, S. M., Rahim, F., Jamil, W., Hariono, M., Yusuf, M., & Wahab, H. (2015). Synthesis of novel flavone hydrazones: In-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. European Journal of Medicinal Chemistry, 105, 156–170. https://doi.org/10.1016/j.ejmech.2015.10.017
  • Imran, S., Taha, M., Selvaraj, M., Ismail, N. H., Chigurupati, S., & Mohammad, J. I. (2017). Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorganic Chemistry, 73, 121–127. https://doi.org/10.1016/j.bioorg.2017.06.007
  • Li, Y., Geng, J., Liu, Y., Yu, S., & Zhao, G. (2013). Thiadiazole-a promising structure in medicinal chemistry. ChemMedChem, 8(1), 27–41. https://doi.org/10.1002/cmdc.201200355
  • Loh, S. P., & Hadira, O. (2011). In vitro inhibitory potential of selected Malaysian plants against key enzymes involved in hyperglycemia and hypertension. Malaysian Journal of Nutrition, 17(1), 77–86.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Maren, T. H., Haywood, J. R., Chapman, S. K., & Zimmerman, T. J. (1977). The pharmacology of methazolamide in relation to the treatment of glaucoma. Investigative Ophthalmology & Visual Science, 16(8), 730–742.
  • Mehta, D. K., Taya, P., Das, R., & Dua, K. (2019). Design, synthesis and molecular docking studies of novel thiadiazole analogues with potential antimicrobial and antiinflammatory activities. Anti-Inflammatory & anti-Allergy Agents in Medicinal Chemistry, 18(2), 91–109. https://doi.org/10.2174/1871520619666190307162442
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muğlu, H., Yakan, H., & Shouaib, H. A. (2020). New 1,3,4-thiadiazoles based on thiophene-2-carboxylic acid: Synthesis, characterization, and antimicrobial activities. Journal of Molecular Structure., 1203, 127470. https://doi.org/10.1016/j.molstruc.2019.127470
  • Rafique, R., Khan, K. M., Chigurupati, S., Wadood, A., Rehman, A. U., Salar, U., Venugopal, V., Shamim, S., Taha, M., & Perveen, S. (2020). Synthesis, in vitro α-amylase inhibitory, and radicals (DPPH & ABTS) scavenging potentials of new N-sulfonohydrazide substituted indazoles. Bioorganic Chemistry, 94, 103410. https://doi.org/10.1016/j.bioorg.2019.103410
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sadat-Ebrahimi, S. E., Mirmohammadi, M., Mojallal Tabatabaei, Z., Azimzadeh Arani, M., Jafari-Ashtiani, S., Hashemian, M., Foroumadi, P., Yahya-Meymandi, A., Moghimi, S., Moshafi, M. H., Norouzi, P., Kabudanian Ardestani, S., & Foroumadi, A. (2019). Novel 5-(nitrothiophene-2-yl)-1, 3, 4-thiadiazole derivatives: Synthesis and antileishmanial activity against promastigote stage of leishmania major. Iranian Journal of Pharmaceutical Research: IJPR, 18(4), 1816–1822.
  • Sales, P. M., Souza, P. M., Simeoni, L. A., Magalhães, P. O., & Silveira, D. (2012). α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. Journal of Pharmacy & Pharmaceutical Sciences, 15(1), 141–183. https://doi.org/10.18433/j35s3k
  • Shamim, S., Khan, K. M., Ullah, N., Chigurupati, S., Wadood, A., Rehman, A. U., Ali, M., Salar, U., Alhowail, A., Taha, M., & Perveen, S. (2020). Synthesis and screening of (E)-3-(2-benzylidenehydrazinyl)-5, 6-diphenyl-1, 2, 4-triazine analogs as novel dual inhibitors of α-amylase and α-glucosidase. Bioorganic Chemistry., 101, 103979. https://doi.org/10.1016/j.bioorg.2020.103979
  • Siddiqui, N., Ahuja, P., Ahsan, W., Pandeya, S. N., & Alam, M. S. (2009). Thiadiazoles: Progress report on biological activities. Journal of Chemical and Pharmaceutical Research, 1(1), 19–30.
  • Song, Z. L., Zhu, Y., Liu, J. R., Guo, S. K., Gu, Y. C., Han, X., Dong, H. Q., Sun, Q., Zhang, W. H., & Zhang, M. Z. (2020). Diversity-oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1, 3, 4-oxadiazole-5-thioether moiety. Molecular Diversity,25, 205–221.
  • Taha, M., Aldhamin, E. A. J., Almandil, N. B., Anouar, E. H., Uddin, N., Alomari, M., Rahim, F., Adalat, B., Ibrahim, M., Nawaz, F., Iqbal, N., Alghanem, B., Altolayyan, A., & Khan, K. M. (2020). Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies. Bioorganic Chemistry, 98, 103745. https://doi.org/10.1016/j.bioorg.2020.103745
  • Taha, M., Baharudin, M. S., Ismail, N. H., Imran, S., Khan, M. N., Rahim, F., Selvaraj, M., Chigurupati, S., Nawaz, M., Qureshi, F., & Vijayabalan, S. (2018). Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chemistry, 80, 36–42. https://doi.org/10.1016/j.bioorg.2018.05.021
  • Taha, M., Imran, S., Ismail, N. H., Selvaraj, M., Rahim, F., Chigurupati, S., Ullah, H., Khan, F., Salar, U., Javid, M. T., Vijayabalan, S., Zaman, K., & Khan, K. M. (2017). Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 74, 1–9. https://doi.org/10.1016/j.bioorg.2017.07.001
  • Taha, M., Ismail, N. H., Imran, S., Wadood, A., Ali, M., Rahim, F., Khan, A. A., & Riaz, M. (2016). Novel thiosemicarbazide–oxadiazole hybrids as unprecedented inhibitors of yeast α-glucosidase and in silico binding analysis. RSC Advances, 6(40), 33733–33742. https://doi.org/10.1039/C5RA28012E
  • Taha, M., Javid, M. T., Imran, S., Selvaraj, M., Chigurupati, S., Ullah, H., Rahim, F., Khan, F., Mohammad, J. I., & Khan, K. M. (2017). Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorganic Chemistry, 74, 179–186. https://doi.org/10.1016/j.bioorg.2017.08.003
  • Taha, M., Rahim, F., Zaman, K., Selvaraj, M., Uddin, N., Farooq, R. K., Nawaz, M., Sajid, M., Nawaz, F., Ibrahim, M., & Khan, K. M. (2020). Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorganic Chemistry, 95, 103555. https://doi.org/10.1016/j.bioorg.2019.103555
  • Taha, M., Shah, S. A. A., Afifi, M., Imran, S., Sultan, S., Rahim, F., & Khan, K. M. (2018). Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic Chemistry, 77, 586–592. https://doi.org/10.1016/j.bioorg.2018.01.033
  • Taha, M., Sultan, S., Imran, S., Rahim, F., Zaman, K., Wadood, A., Rehman, A. U., Uddin, N., & Khan, K. M. (2019). Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorganic & Medicinal Chemistry, 27(18), 4081–4088. https://doi.org/10.1016/j.bmc.2019.07.035
  • Trompowsky, V., Manoel, A. C., Conde, T. R., Lemos, R. C., Quaresma, B. M., Pitombeira, M. C. S., Decarvalho, A. S., Boechat, N., Salomão, K., de Castro, S. L., & Zamith, H. P. D. S. (2019). In vitro genotoxicity of nitroimidazoles as a tool in the search of new trypanocidal agents. Memorias Do Instituto Oswaldo Cruz, 114, e190017. https://doi.org/10.1590/0074-02760190017
  • van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., van de Lisdonk, E. H., Rutten, G. E., & van Weel, C. (2005). Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis . Diabetes Care, 28(1), 154–163. https://doi.org/10.2337/diacare.28.1.154
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Whitcomb, D. C., & Lowe, M. E. (2007). Human pancreatic digestive enzymes. Digestive Diseases and Sciences, 52(1), 1–17. https://doi.org/10.1007/s10620-006-9589-z
  • Wu, X., Brooks, B. R., & Vanden-Eijnden, E. (2016). Self-guided Langevin dynamics via generalized Langevin equation. Journal of Computational Chemistry, 37(6), 595–601. https://doi.org/10.1002/jcc.24015
  • Wu, L., Jiang, J., Jin, Y., Kallemeijn, W. W., Kuo, C.-L., Artola, M., Dai, W., van Elk, C., van Eijk, M., van der Marel, G. A., Codée, J. D. C., Florea, B. I., Aerts, J. M. F. G., Overkleeft, H. S., & Davies, G. J. (2017). Activity-based probes for functional interrogation of retaining β-glucuronidases. Nature Chemical Biology, 13(8), 867–873. https://doi.org/10.1038/nchembio.2395
  • Yousuf, H., Shamim, S., Khan, K. M., Chigurupati, S., Hameed, S., Khan, M. N., Taha, M., & Arfeen, M. (2020). Dihydropyridines as potential α-amylase and α-glucosidase inhibitors: Synthesis, in vitro and in silico studies. Bioorganic Chemistry, 96, 103581. https://doi.org/10.1016/j.bioorg.2020.103581

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.