269
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel small molecule inhibitors for endoplasmic reticulum oxidoreductase 1α (ERO1α) enzyme: structure-based molecular docking and molecular dynamic simulation studies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 13218-13232 | Received 11 Feb 2021, Accepted 16 Sep 2021, Published online: 04 Oct 2021

Reference

  • Alasiri, G., Fan, L. Y.-N., Zona, S., Goldsbrough, I. G., Ke, H.-L., Auner, H. W., & Lam, E. W.-F. (2018). ER stress and cancer: The FOXO forkhead transcription factor link. Molecular and Cellular Endocrinology, 462(Pt B), 67–81. https://doi.org/10.1016/j.mce.2017.05.027
  • Araki, K., & Nagata, K. (2011). Functional in vitro analysis of the ERO1 protein and protein-disulfide isomerase pathway. The Journal of Biological Chemistry, 286(37), 32705–32712. https://doi.org/10.1074/jbc.M111.227181
  • Blais, J. D., Chin, K.-T., Zito, E., Zhang, Y., Heldman, N., Harding, H. P., Fass, D., Thorpe, C., & Ron, D. (2010). A small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity. The Journal of Biological Chemistry, 285(27), 20993–21003. https://doi.org/10.1074/jbc.M110.126599
  • Bowers, K. J., Sacerdoti, F. D., Salmon, J. K., Shan, Y., Shaw, D. E., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., & Moraes, M. A. (2006). Molecular dynamics—Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing - SC ’06, 84. https://doi.org/10.1145/1188455.1188544
  • Cerqueira, N. M. F. S. A., Gesto, D., Oliveira, E. F., Santos-Martins, D., Brás, N. F., Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2015). Receptor-based virtual screening protocol for drug discovery. Archives of Biochemistry and Biophysics, 582, 56–67. https://doi.org/10.1016/j.abb.2015.05.011
  • Chen, I.-J., & Foloppe, N. (2010). Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: Comparison to programs MOE and catalyst. Journal of Chemical Information and Modeling, 50(5), 822–839. https://doi.org/10.1021/ci100026x
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, NJ), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Galmiche, A., Sauzay, C., Chevet, E., & Pluquet, O. (2017). Role of the unfolded protein response in tumor cell characteristics and cancer outcome. Current Opinion in Oncology, 29(1), 41–47. https://doi.org/10.1097/CCO.0000000000000339
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x
  • Inaba, K., Masui, S., Iida, H., Vavassori, S., Sitia, R., & Suzuki, M. (2010). Crystal structures of human Ero1α reveal the mechanisms of regulated and targeted oxidation of PDI. The EMBO Journal, 29(19), 3330–3343. https://doi.org/10.1038/emboj.2010.222
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2021). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(9), 3213–3224. https://doi.org/10.1080/07391102.2020.1761883
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Kukita, K., Tamura, Y., Tanaka, T., Kajiwara, T., Kutomi, G., Saito, K., Okuya, K., Takaya, A., Kanaseki, T., Tsukahara, T., Hirohashi, Y., Torigoe, T., Furuhata, T., Hirata, K., & Sato, N. (2015). Cancer-associated oxidase ERO1-α regulates the expression of MHC Class I molecule via oxidative folding. Journal of Immunology (Baltimore, MD: 1950), 194(10), 4988–4996. https://doi.org/10.4049/jimmunol.1303228
  • Kutomi, G., Tamura, Y., Tanaka, T., Kajiwara, T., Kukita, K., Ohmura, T., Shima, H., Takamaru, T., Satomi, F., Suzuki, Y., Torigoe, T., Sato, N., & Hirata, K. (2013). Human endoplasmic reticulum oxidoreductin 1-α is a novel predictor for poor prognosis of breast cancer. Cancer Science, 104(8), 1091–1096. https://doi.org/10.1111/cas.12177
  • Kuttruff, C. A., Eastgate, M. D., & Baran, P. S. (2014). Natural product synthesis in the age of scalability. Natural Product Reports, 31(4), 419–432. https://doi.org/10.1039/c3np70090a
  • Lee, A. S., & Hendershot, L. M. (2006). ER stress and cancer. Cancer Biology & Therapy, 5(7), 721–722. https://doi.org/10.4161/cbt.5.7.3120
  • Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34–41. https://doi.org/10.1016/j.addr.2016.04.029
  • May, D., Itin, A., Gal, O., Kalinski, H., Feinstein, E., & Keshet, E. (2005). Ero1-L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: Implication for cancer. Oncogene, 24(6), 1011–1020. https://doi.org/10.1038/sj.onc.1208325
  • McDonnell, A. M., & Dang, C. H. (2013). Basic review of the cytochrome p450 system. Journal of the Advanced Practitioner in Oncology, 4(4), 263–268. https://doi.org/10.6004/jadpro.2013.4.4.7
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Oakes, S. A. (2017). Endoplasmic reticulum proteostasis: A key checkpoint in cancer. American Journal of Physiology. Cell Physiology, 312(2), C93–C102. https://doi.org/10.1152/ajpcell.00266.2016
  • Pirmohamed, M., & Park, B. K. (2003). Cytochrome P450 enzyme polymorphisms and adverse drug reactions. Toxicology, 192(1), 23–32. https://doi.org/10.1016/S0300-483X(03)00247-6
  • Rashid, H.-O., Yadav, R. K., Kim, H.-R., & Chae, H.-J. (2015). ER stress: Autophagy induction, inhibition and selection. Autophagy, 11(11), 1956–1977. https://doi.org/10.1080/15548627.2015.1091141
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Rostkowski, M., Olsson, M. H. M., Søndergaard, C. R., & Jensen, J. H. (2011). Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Structural Biology, 11, 6. https://doi.org/10.1186/1472-6807-11-6
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Seol, S.-Y., Kim, C., Lim, J. Y., Yoon, S. O., Hong, S. W., Kim, J. W., Choi, S. H., & Cho, J. Y. (2016). Overexpression of endoplasmic reticulum oxidoreductin 1-α (ERO1L) is associated with poor prognosis of gastric cancer. Cancer Research and Treatment, 48(4), 1196–1209. https://doi.org/10.4143/crt.2015.189
  • Sevier, C. S., & Kaiser, C. A. (2008). Ero1 and redox homeostasis in the endoplasmic reticulum. Biochimica et Biophysica Acta, 1783(4), 549–556. https://doi.org/10.1016/j.bbamcr.2007.12.011
  • Takei, N., Yoneda, A., Sakai-Sawada, K., Kosaka, M., Minomi, K., & Tamura, Y. (2017). Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells. Scientific Reports, 7(1), 9389. https://doi.org/10.1038/s41598-017-09976-7
  • Tanaka, T., Kajiwara, T., Torigoe, T., Okamoto, Y., Sato, N., & Tamura, Y. (2015). Cancer-associated oxidoreductase ERO1-α drives the production of tumor-promoting myeloid-derived suppressor cells via oxidative protein folding. Journal of Immunology (Baltimore, MD: 1950), 194(4), 2004–2010. https://doi.org/10.4049/jimmunol.1402538
  • Tanaka, T., Kutomi, G., Kajiwara, T., Kukita, K., Kochin, V., Kanaseki, T., Tsukahara, T., Hirohashi, Y., Torigoe, T., Okamoto, Y., Hirata, K., Sato, N., & Tamura, Y. (2016). Cancer-associated oxidoreductase ERO1-α drives the production of VEGF via oxidative protein folding and regulating the mRNA level. British Journal of Cancer, 114(11), 1227–1234. https://doi.org/10.1038/bjc.2016.105
  • Tanaka, T., Kutomi, G., Kajiwara, T., Kukita, K., Kochin, V., Kanaseki, T., Tsukahara, T., Hirohashi, Y., Torigoe, T., Okamoto, Y., Hirata, K., Sato, N., & Tamura, Y. (2017). Cancer-associated oxidoreductase ERO1-α promotes immune escape through up-regulation of PD-L1 in human breast cancer. Oncotarget, 8(15), 24706–24718. https://doi.org/10.18632/oncotarget.14960
  • Thornton, M., Aslam, M. A., Tweedle, E. M., Ang, C., Campbell, F., Jackson, R., Costello, E., Rooney, P. S., Vlatković, N., & Boyd, M. T. (2013). The unfolded protein response regulator GRP78 is a novel predictive biomarker in colorectal cancer. International Journal of Cancer, 133(6), 1408–1418. https://doi.org/10.1002/ijc.28137
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, L., Wang, X., & Wang, C. (2015). Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radical Biology & Medicine, 83, 305–313. https://doi.org/10.1016/j.freeradbiomed.2015.02.007
  • Yan, W., Wang, X., Liu, T., Chen, L., Han, L., Xu, J., Jin, G., Harada, K., Lin, Z., & Ren, X. (2019). Expression of endoplasmic reticulum oxidoreductase 1-α in cholangiocarcinoma tissues and its effects on the proliferation and migration of cholangiocarcinoma cells. Cancer Management and Research, 11, 6727–6739. https://doi.org/10.2147/CMAR.S188746
  • Yang, S., Yang, C., Yu, F., Ding, W., Hu, Y., Cheng, F., Zhang, F., Guan, B., Wang, X., Lu, L., & Rao, J. (2018). Endoplasmic reticulum resident oxidase ERO1-Lalpha promotes hepatocellular carcinoma metastasis and angiogenesis through the S1PR1/STAT3/VEGF-A pathway. Cell Death & Disease, 9(11), 1105. https://doi.org/10.1038/s41419-018-1134-4
  • Yang, Y., Zhou, Q., Gao, A., Chen, L., & Li, L. (2020). Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clinica Chimica Acta; International Journal of Clinical Chemistry, 504, 125–137. https://doi.org/10.1016/j.cca.2020.01.031
  • Zhang, Y., Li, T., Zhang, L., Shangguan, F., Shi, G., Wu, X., Cui, Y., Wang, X., Wang, X., Liu, Y., Lu, B., Wei, T., Wang, C.-C., & Wang, L. (2019). Targeting the functional interplay between endoplasmic reticulum oxidoreductin-1α and protein disulfide isomerase suppresses the progression of cervical cancer. EBioMedicine, 41, 408–419. https://doi.org/10.1016/j.ebiom.2019.02.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.