234
Views
1
CrossRef citations to date
0
Altmetric
Letter to the Editor

Influence of stabilizing osmolytes on hen egg white lysozyme fibrillation

ORCID Icon, , , &
Pages 13346-13353 | Received 01 May 2021, Accepted 20 Sep 2021, Published online: 08 Oct 2021

References

  • Al-Shabib, N. A., Khan, J. M., Malik, A., Rehman, M. T., Husain, F. M., AlAjmi, M. F., Hamdan Ali Alghamdi, O., & Khan, A. (2021). Quinoline yellow dye stimulates whey protein fibrillation via electrostatic and hydrophobic interaction: A biophysical study. Journal of Dairy Science, 104(5), 5141–5151. https://doi.org/10.3168/jds.2020-19766
  • Al-Shabib, N. A., Khan, J. M., Malik, A., Sen, P., Alsenaidy, M. A., Husain, F. M., Alsenaidy, A. M., Khan, R. H., Choudhry, H., Zamzami, M. A., Khan, M. I., & Shahzad, S. A. (2019). A quercetin-based flavanoid (rutin) reverses amyloid fibrillation in β-lactoglobulin at pH 2.0 and 358 K. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 214, 40–48. https://doi.org/10.1016/j.saa.2019.02.004
  • Arakawa, T., & Timasheff, S. N. (1985). The stabilization of proteins by osmolytes. Biophysical Journal, 47(3), 411–414. https://doi.org/10.1016/S0006-3495(85)83932-1
  • Arnaudov, L. N., & De Vries, R. (2005). Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophysical Journal, 88(1), 515–526. https://doi.org/10.1529/biophysj.104.048819
  • Brudar, S., & Hribar-Lee, B. (2019). The role of buffers in wild-type HEWL amyloid fibril formation mechanism. Biomolecules, 9(2), 65–83. https://doi.org/10.3390/biom9020065
  • Cao, Y., & Mezzenga, R. (2019). Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Advances in Colloid and Interface Science, 269, 334–356. https://doi.org/10.1016/j.cis.2019.05.002
  • Chaturvedi, S. K., Zaidi, N., Alam, P., Khan, J. M., Qadeer, A., Siddique, I. A., Asmat, S., Zaidi, Y., & Khan, R. H. (2015). Unraveling comparative anti-amyloidogenic behavior of pyrazinamide and D-cycloserine: A mechanistic biophysical insight. PLoS One, 10(8), e0136528. https://doi.org/10.1371/journal.pone.0136528
  • Chaudhary, A. P., Vispute, N. H., Shukla, V. K., & Ahmad, B. (2017). A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition. Biochimie, 132, 75–84. https://doi.org/10.1016/j.biochi.2016.11.002
  • Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75, 333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901
  • Härd, T., & Lendel, C. (2012). Inhibition of amyloid formation. Journal of Molecular Biology, 421(4–5), 441–465. https://doi.org/10.1016/j.jmb.2011.12.062
  • Jansens, K. J., Rombouts, I., Grootaert, C., Brijs, K., Van Camp, J., Van der Meeren, P., Rousseau, F., Schymkowitz, J., & Delcour, J. A. (2019). Rational design of amyloid-like fibrillary structures for tailoring food protein techno-functionality and their potential health implications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 84–105. https://doi.org/10.1111/1541-4337.12404
  • Jung, J. M., Savin, G., Pouzot, M., Schmitt, C., & Mezzenga, R. (2008). Structure of heat-induced beta-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate . Biomacromolecules, 9(9), 2477–2486. https://doi.org/10.1021/bm800502j
  • Kaczkowska, E., Wawer, J., Tyczyńska, M., Jóźwiak, M., & Krakowiak, J. (2019). The hydration of selected biologically relevant molecules – the temperature effect on apparent molar volume and compression. Journal of Molecular Liquids, 274, 345–352. https://doi.org/10.1016/j.molliq.2018.10.155
  • Khan, S.H., Ahmad, N., Ahmad, F., & Kumar, R. (2010). Naturally occurring organic osmolytes: From cell physiology to disease prevention. IUBMB Life, 62(12), 891–895. https://doi.org/10.1002/iub.406
  • Krakowiak, J., Wawer, J., & Panuszko, A. (2013a). Densimetric and ultrasonic characterization of urea and its derivatives in water. The Journal of Chemical Thermodynamics, 58, 211–220. https://doi.org/10.1016/j.jct.2012.11.007
  • Krakowiak, J., Wawer, J., & Panuszko, A. (2013b). The hydration of the protein stabilizing agents: Trimethylamine-N-oxide, glycine and its N-methylderivatives – The volumetric and compressibility studies. The Journal of Chemical Thermodynamics, 60, 179–190. https://doi.org/10.1016/j.jct.2013.01.023
  • Kumari, A., Muthu, S.A., Prakash, P., & Ahmad, B. (2020). Herbalome of Chandraprabha vati, a polyherbal formulation of Ayurveda prevents fibrillation of lysozyme by stabilizing aggregation-prone intermediate state. International Journal of Biological Macromolecules, 148, 102–109. https://doi.org/10.1016/j.ijbiomac.2020.01.121
  • Mohammadian, M., & Madadlou, A. (2018). Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition. Trends in Food Science & Technology, 75, 115–128. https://doi.org/10.1016/j.tifs.2018.03.013
  • Panuszko, A., Bruździak, P., Kaczkowska, E., & Stangret, J. (2016). General mechanism of osmolytes' influence on protein stability irrespective of the type of osmolyte cosolvent. The Journal of Physical Chemistry B, 120(43), 11159–11169. https://doi.org/10.1021/acs.jpcb.6b10119
  • Poniková, S., Antošová, A., Demjén, E., Sedláková, D., Marek, J., Varhač, R., Gažová, Z., & Sedlák, E. (2015). Lysozyme stability and amyloid fibrillization dependence on Hofmeister anions in acidic pH. Journal of Biological Inorganic Chemistry, 20(6), 921–933. https://doi.org/10.1007/s00775-015-1276-0
  • Sabulal, B., & Kishore, N. (1995). Differential scanning calorimetric study of the interactions of some stabilizing amino acids and oligopeptides with hen egg white lysozyme. Journal of the Chemical Society, Faraday Transactions, 91(14), 2101–2106. https://doi.org/10.1039/ft9959102101
  • Santoro, M. M., Liu, Y., Khan, S. M. A., Hou, L. X., & Bolen, D. W. (1992). Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 31(23), 5278–5283. https://doi.org/10.1021/bi00138a006
  • Sharma, V., & Ghosh, K. S. (2019). Inhibition of amyloid fibrillation by small molecules and nanomaterials: Strategic development of pharmaceuticals against amyloidosis. Protein and Peptide Letters, 26(5), 315–323. https://doi.org/10.2174/0929866526666190307164944
  • Shiraki, K., Kudou, M., Aso, Y., & Takagi, M. (2003). Dissolution of protein aggregation by small amine compounds. Science and Technology of Advanced Materials, 4(1), 55–59. https://doi.org/10.1016/S1468-6996(03)00007-X
  • Silva, N. H., Pinto, R. J., Freire, C. S., & Marrucho, I. M. (2016). Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions. Colloids and Surfaces B, Biointerfaces, 147, 36–44. https://doi.org/10.1016/j.colsurfb.2016.07.005
  • Silva, N. H., Pinto, R. J., Martins, M. A., Ferreira, R., Correia, I., Freire, C. S., & Marrucho, I. M. (2018). Ionic liquids as promoters of fast lysozyme fibrillation. Journal of Molecular Liquids, 272, 456–467. https://doi.org/10.1016/j.molliq.2018.08.064
  • Sonavane, S., Haider, S. Z., Kumar, A., & Ahmad, B. (2017). Hemin is able to disaggregate lysozyme amyloid fibrils into monomers. Biochimica et Biophysica Acta. Proteins and Proteomics, 1865(11 Pt A), 1315–1325. https://doi.org/10.1016/j.bbapap.2017.07.017
  • Sreerama, N., & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 287(2), 252–260. https://doi.org/10.1006/abio.2000.4880
  • Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., & Blake, C. C. (1997). Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Journal of Molecular Biology, 273(3), 729–739. https://doi.org/10.1006/jmbi.1997.1348
  • Takai, E., Uda, K., Matsushita, S., Shikiya, Y., Yamada, Y., Shiraki, K., Zako, T., & Maeda, M. (2014). Cysteine inhibits amyloid fibrillation of lysozyme and directs the formation of small worm-like aggregates through non-covalent interactions. Biotechnology Progress, 30(2), 470–478. https://doi.org/10.1002/btpr.1866
  • Wang, S. S., Chou, S. W., Liu, K. N., & Wu, C. H. (2009). Effects of glutathione on amyloid fibrillation of hen egg-white lysozyme. International Journal of Biological Macromolecules, 45(4), 321–329. https://doi.org/10.1016/j.ijbiomac.2009.08.003
  • Wawer, J., Kaczkowska, E., Karczewski, J., Olszewski, M., Augustin-Nowacka, D., & Krakowiak, J. (2019). Amyloid fibril formation in the presence of water structure-affecting solutes. Biophysical Chemistry, 254, 106265. https://doi.org/10.1016/j.bpc.2019.106265
  • Wawer, J., & Krakowiak, J. (2018). Structural changes of water caused by non-electrolytes: Volumetric and compressibility approach for urea-like analogues. Journal of Molecular Liquids, 259, 112–123. https://doi.org/10.1016/j.molliq.2018.02.127
  • Wawer, J., Szociński, M., Olszewski, M., Piątek, R., Naczk, M., & Krakowiak, J. (2019). Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme. International Journal of Biological Macromolecules, 121, 63–70. https://doi.org/10.1016/j.ijbiomac.2018.09.165
  • Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32, W668–W673. https://doi.org/10.1093/nar/gkh371
  • Whitmore, L., & Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 89(5), 392–400. https://doi.org/10.1002/bip.20853
  • Wong, A. G., Wu, C., Hannaberry, E., Watson, M. D., Shea, J. E., & Raleigh, D. P. (2016). Analysis of the amyloidogenic potential of pufferfish (Takifugu rubripes) islet amyloid polypeptide highlights the limitations of thioflavin-T assays and the difficulties in defining amyloidogenicity. Biochemistry, 55(3), 510–518. https://doi.org/10.1021/acs.biochem.5b01107
  • Xu, M., Shashilov, V. A., Ermolenkov, V. V., Fredriksen, L., Zagorevski, D., & Lednev, I. K. (2007). The first step of hen egg white lysozyme fibrillation, irreversible partial unfolding, is a two-state transition. Protein Science, 16(5), 815–832. https://doi.org/10.1110/ps.062639307
  • Zang, Y. (2013). Development of a crystallization step for monoclonal antibody purification: Screening, optimization and aggregation control [Ph.D. thesis]. Karlsruhe Institute of Technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.