156
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dissociation of the Watson-Crick base pairs in vacuum and in aqueous solution: a first-principles molecular dynamics study

, &
Pages 13207-13217 | Received 13 May 2021, Accepted 14 Sep 2021, Published online: 10 Oct 2021

References

  • Aida, M. (1988). Characteristics of the Watson-Crick type hydrogen-bonded DNA base pairs: An ab initio molecular orbital study. Journal of Computational Chemistry, 9(4), 362–368. https://doi.org/10.1002/jcc.540090411
  • Barinov, N. A., Prokhorov, V. V., Dubrovin, E. V., & Klinov, D. V. (2016). AFM visualization at a single-molecule level of denaturated states of proteins on graphite. Colloids and Surfaces B, Biointerfaces, 146, 777–784. https://doi.org/10.1016/j.colsurfb.2016.07.014
  • Beck, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98(7), 5646–5648. https://doi.org/10.1063/1.464913
  • Berendsen, H. (2007). Simulating the physical world: Hierarchical modeling from quantum mechanics to fluid dynamics. Cambridge University Press. https://doi.org/10.1017/CBO9780511815348
  • Bhunia, A., Vojtíšek, P., & Manna, S. C. (2019). DFT/TD-DFT calculation, photophysical properties, DNA/protein binding and catecholase activity of chelating ligand based trigonal bipyramidal copper (II) complexes. Journal of Molecular Structure, 1179, 558–567. https://doi.org/10.1016/j.molstruc.2018.11.021
  • Bhushan, B., & Koinkar, V. N. (1994). Nanoindentation hardness measurements using atomic force microscopy. Applied Physics Letters, 64(13), 1653–1655. https://doi.org/10.1063/1.111949
  • Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930–936. https://doi.org/10.1103/PhysRevLett.56.930
  • Boland, T., & Ratner, B. D. (1995). Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5297–5301. https://doi.org/10.1073/pnas.92.12.5297
  • Braga, P. C., & Ricci, D. (Eds.). (2011). Atomic force microscopy in biomedical research: Methods and protocols. Humana Press.
  • Brameld, K., Dasgupta, S., & Goddard, W. A. (1997). Distance dependent hydrogen bond potentials for nucleic acid base pairs from ab initio quantum mechanical calculations (LMP2/cc-pVTZ). The Journal of Physical Chemistry B, 101(24), 4851–4859. https://doi.org/10.1021/jp970199a
  • Butt, H. J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1–6), 1–152. https://doi.org/10.1016/j.surfrep.2005.08.003
  • Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Reviews of Modern Physics, 15(1), 1–89. https://doi.org/10.1103/RevModPhys.15.1
  • Chen, H. Y., Yang, P. Y., Chen, H. F., Kao, C. L., & Liao, L. W. (2014). DFT reinvestigation of DNA strand breaks induced by electron attachment. The Journal of Physical Chemistry B, 118(38), 11137–11144. https://doi.org/10.1021/jp506679b
  • Clausen-Schaumann, H., Rief, M., Tolksdorf, C., & Gaub, H. E. (2000). Mechanical stability of single DNA molecules. Biophysical Journal, 78(4), 1997–2007. https://doi.org/10.1016/S0006-3495(00)76747-6
  • Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J. L., Chatenay, D., & Caron, F. (1996). DNA: An extensible molecule. Science (New York, NY), 271(5250), 792–794. https://doi.org/10.1126/science.271.5250.792
  • Delle Piane, M., Corno, M., Orlando, R., Dovesi, R., & Ugliengo, P. (2016). Elucidating the fundamental forces in protein crystal formation: The case of crambin. Chemical Science, 7(2), 1496–1507. https://doi.org/10.1039/C5SC03447G
  • Deng, A., Li, H., Bo, M., Huang, Z., Li, L., Yao, C., & Li, F. (2020). Understanding atomic bonding and electronic distributions of a DNA molecule using DFT calculation and BOLS-BC model. Biochemistry and Biophysics Reports, 24, 100804. https://doi.org/10.1016/j.bbrep.2020.100804
  • Desiraju, G. R. (2002). Hydrogen bridges in crystal engineering: Interactions without borders. Accounts of Chemical Research, 35(7), 565–573. The terms ‘hydrogen bond’ and ‘hydrogen bridge’ are used interchangeably in the literature, however, we use the term hydrogen bridge to differentiate it from a hydrogen bond, where the latter may be understood as a covalent bond between H and a heavy atom. https://doi.org/10.1021/ar010054t
  • Eilmes, A. (2012). Ab initio molecular dynamics simulations of ketocyanine dyes in organic solvents. In Building a national distributed e-infrastructure–PL-grid. Springer. 276–284. https://doi.org/10.1007/978-3-642-28267-6_22
  • Endo, M. (2019). AFM-based single-molecule observation of the conformational changes of DNA structures. Methods (San Diego, CA), 169, 3–10. https://doi.org/10.1016/j.ymeth.2019.04.007
  • Epstein, R. J. (2003). Human molecular biology: An introduction to the molecular basis of health and disease. Cambridge University Press.
  • Essevaz-Roulet, B., Bockelmann, U., & Heslot, F. (1997). Mechanical separation of the complementary strands of DNA. Proceedings of the National Academy of Sciences, 94(22), 11935–11940. https://doi.org/10.1073/pnas.94.22.11935
  • Every, A. E., & Russu, I. M. (2007). Probing the role of hydrogen bonds in the stability of base pairs in double-helical DNA. Biopolymers, 87(2–3), 165–173. https://doi.org/10.1002/bip.20811
  • Franca, E. D. F., Amarante, A. M., Leite, F. L., & Méndez-Vilas, A. (2010). Introduction to atomic force microscopy simulation. Science, Technology, Applications and Education, 4, 1338–1349.
  • Gould, I. R., & Kollman, P. A. (1994). Theoretical investigation of the hydrogen bond strengths in guanine-cytosine and adenine-thymine base pairs. Journal of the American Chemical Society, 116(6), 2493–2499. https://doi.org/10.1021/ja00085a033
  • Grimme, S., Huenerbein, R., & Ehrlich, S. (2011). On the importance of the dispersion energy for the thermodynamic stability of molecules. Chemphyschem, 12(7), 1258–1261. https://doi.org/10.1002/cphc.201100127
  • Guerra, C. F., Bickelhaupt, F. M., Baerends, E. J., & Snijders, J. G. (2002). Tackling DNA with density functional theory: Development and application of parallel and order-N DFT methods. In Computational Chemistry: Reviews of Current Trends (pp. 17–61). https://doi.org/10.1142/9789812776815_0002
  • Halder, A., Data, D., Seelam, P. P., Bhattacharyya, D., & Mitra, A. (2019). Estimating strengths of individual hydrogen bonds in RNA base pairs: Toward a consensus between different computational approaches. ACS Omega, 4(4), 7354–7368. https://doi.org/10.1021/acsomega.8b03689
  • Harris, S. A., Sands, Z. A., & Laughton, C. A. (2005). Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA. Biophysical Journal, 88(3), 1684–1691. https://doi.org/10.1529/biophysj.104.046912
  • Hobza, P., & Šponer, J. (1999). Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical ab initio calculations. Chemical Reviews, 99(11), 3247–3276. https://doi.org/10.1021/cr9800255
  • Hobza, P., Kabeláč, M., Šponer, J., Mejzlík, P., & Vondrášek, J. (1997). Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree–Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree–Fock results. Journal of Computational Chemistry, 18(9), 1136–1150. https://doi.org/10.1002/(SICI)1096-987X(19970715)18:9 < 1136::AID-JCC3 > 3.0.CO;2-S
  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864–B871. https://doi.org/10.1103/PhysRev.136.B864
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
  • Kuzkin, V. A. (2015). On angular momentum balance for particle systems with periodic boundary conditions. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 95(11), 1290–1295. https://doi.org/10.1002/zamm.201400045
  • Lee, C. K., Wang, Y. M., Huang, L. S., & Lin, S. (2007). Atomic force microscopy: Determination of unbinding force, off rate and energy barrier for protein-ligand interaction. Micron (Oxford, England: 1993), 38(5), 446–461. https://doi.org/10.1016/j.micron.2006.06.014
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lee, G. U., Chrisey, L. A., & Colton, R. J. (1994). Direct measurement of the forces between complementary strands of DNA. Science (New York, NY), 266(5186), 771–773. https://doi.org/10.1126/science.7973628
  • Lyubchenko, Y. L. (2018). Direct AFM visualization of the nanoscale dynamics of biomolecular complexes. Journal of Physics D: Applied Physics, 51(40), 403001. https://doi.org/10.1088/1361-6463/aad898
  • MacKerell, A. D., Jr., & Lee, G. U. (1999). Structure, force, and energy of a double-stranded DNA oligonucleotide under tensile loads. European Biophysics Journal: EBJ, 28(5), 415–426. https://doi.org/10.1007/s002490050224
  • Madariaga, S. T., & Contreras, J. G. (2010). Theoretical study of the non-Watson-Crick base pair Guanine-Guanine. Journal of the Chilean Chemical Society, 55(1), 50–52. https://doi.org/10.4067/S0717-97072010000100012
  • Maheshwary, S., Patel, N., Sathyamurthy, N., Kulkarni, A. D., & Gadre, S. R. (2001). Structure and stability of water clusters (H2O) n, n= 8–20: An ab initio investigation. The Journal of Physical Chemistry A, 105(46), 10525–10537. https://doi.org/10.1021/jp013141b
  • Maiti, S., & Bhattacharyya, D. (2017). Stacking interactions involving non-Watson-Crick basepairs: Dispersion corrected density functional theory studies. Physical Chemistry Chemical Physics: PCCP, 19(42), 28718–28730. https://doi.org/10.1039/C7CP04904H
  • Martínez-Zapata, D., Rosas-Acevedo, H., & Santamaria, R. (2017). The interaction of sodium sulfite with the DNA nucleic acid bases: A first-principles molecular dynamics study. Computational and Theoretical Chemistry, 1099, 116–122. https://doi.org/10.1016/j.comptc.2016.11.021
  • Monajjemi, M., & Chahkandi, B. (2005). Theoretical investigation of hydrogen bonding in Watson–Crick, Hoogestein and their reversed and other models: Comparison and analysis for configurations of adenine–thymine base pairs in 9 models. Journal of Molecular Structure: THEOCHEM, 714(1), 43–60. https://doi.org/10.1016/j.theochem.2004.09.048
  • Monajjemi, M., Chahkandi, B., Zare, K., & Amiri, A. (2005). Study of the hydrogen bond in different orientations of adenine-thymine base pairs: An ab initio study. Biochemistry. Biokhimiia, 70(3), 366–376. https://doi.org/10.1007/s10541-005-0123-2
  • Morii, T., Mizuno, R., Haruta, H., & Okada, T. (2004). An AFM study of the elasticity of DNA molecules. Thin Solid Films., 464–465, 456–458. https://doi.org/10.1016/j.tsf.2004.06.066
  • Mukhopadhyay, T. K., & Datta, A. (2018). Design rules for the generation of stable quartet phases of nucleobases over two-dimensional materials. The Journal of Physical Chemistry C, 122(50), 28918–28933. https://doi.org/10.1021/acs.jpcc.8b08839
  • Mukhopadhyay, T. K., & Datta, A. (2020a). Delicate balance of non-covalent forces govern the biocompatibility of graphitic carbon nitride towards genetic materials. Chemphyschem, 21(16), 1836–1846. https://doi.org/10.1002/cphc.202000385
  • Mukhopadhyay, T. K., & Datta, A. (2020b). Screening two dimensional materials for the transportation and delivery of diverse genetic materials. Nanoscale, 12(2), 703–719. https://doi.org/10.1039/C9NR05930J
  • Mukhopadhyay, T. K., Bhattacharyya, K., & Datta, A. (2018). Gauging the nanotoxicity of h2D-C2N toward single-stranded DNA: An in silico molecular simulation approach. ACS Applied Materials & Interfaces, 10(16), 13805–13818. https://doi.org/10.1021/acsami.8b00494
  • Naserian-Nik, A. M., Tahani, M., & Karttunen, M. (2013). Pulling of double-stranded DNA by atomic force microscopy: A simulation in atomistic details. RSC Advances, 3(26), 10516–10528. https://doi.org/10.1039/c3ra23213a
  • Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. Macmillan.
  • Nievergelt, A. P., Kammer, C., Brillard, C., Kurisinkal, E., Bastings, M. M., Karimi, A., & Fantner, G. E. (2019). Large-range HS-AFM imaging of DNA self-assembly through in situ data-driven control. Small Methods., 3(7), 1900031. https://doi.org/10.1002/smtd.201900031
  • Orzechowski, M., & Cieplak, P. (2005). Application of steered molecular dynamics (SMD) to study DNA–drug complexes and probing helical propensity of amino acids. Journal of Physics: Condensed Matter, 17(18), S1627–S1640. https://doi.org/10.1088/0953-8984/17/18/018
  • Palafox, M. A., & Rastogi, V. K. (2016). Density functional computations on 6-aminouracil: Effect of amino group in the 6th position on the Watson–Crick base pair Uridine–Adenosine. Australian Journal of Chemistry, 69(8), 881–889. https://doi.org/10.1071/CH15793
  • Parr, R. G. (1980). Density functional theory of atoms and molecules. In Horizons of quantum chemistry (pp. 5–15). Springer. https://doi.org/10.1007/978-94-009-9027-2_2
  • Paterlini, M. G., & Ferguson, D. M. (1998). Constant temperature simulations using the Langevin equation with velocity Verlet integration. Chemical Physics, 236(1–3), 243–252. https://doi.org/10.1016/S0301-0104(98)00214-6
  • Ramalho, J. P. P., Gomes, J. R., & Illas, F. (2013). Accounting for van der Waals interactions between adsorbates and surfaces in density functional theory based calculations: Selected examples. RSC Advances, 3(32), 13085–13100. https://doi.org/10.1039/c3ra40713f
  • Rezác, J., Hobza, P., & Harris, S. A. (2010). Stretched DNA investigated using molecular-dynamics and quantum-mechanical calculations. Biophysical Journal, 98(1), 101–110. https://doi.org/10.1016/j.bpj.2009.08.062
  • Round, A. N., & Miles, M. J. (2004). Exploring the consequences of attractive and repulsive interaction regimes in tapping mode atomic force microscopy of DNA. Nanotechnology, 15(4), S176–S183. https://doi.org/10.1088/0957-4484/15/4/011
  • Santamaria, R., & Vazquez, A. (1994). Structural and electronic property changes of the nucleic acid bases upon base pair formation. Journal of Computational Chemistry, 15(9), 981–996. https://doi.org/10.1002/jcc.540150907
  • Santamaria, R., de la Paz, A. A., Roskop, L., & Adamowicz, L. (2016). Statistical contact model for confined molecules. Journal of Statistical Physics, 164(4), 1000–1025. https://doi.org/10.1007/s10955-016-1569-x
  • Santosh, M., & Maiti, P. K. (2008). Force induced DNA melting. Journal of Physics. Condensed Matter, 21(3), 034113. https://doi.org/10.1088/0953-8984/21/3/034113
  • Shirts, R. B., Burt, S. R., & Johnson, A. M. (2006). Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation. The Journal of Chemical Physics, 125(16), 164102. https://doi.org/10.1063/1.2359432
  • Shishkin, O., Šponer, J., & Hobza, P. (1999). Intramolecular flexibility of DNA bases in adenine–thymine and guanine–cytosine Watson–Crick base pairs. Journal of Molecular Structure, 477(1–3), 15–21. https://doi.org/10.1016/S0022-2860(98)00603-6
  • Smith, S. B., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science (New York, NY), 258(5085), 1122–1126. https://doi.org/10.1126/science.1439819
  • Song, C., Wang, L. P., & Martínez, T. J. (2016). Automated code engine for graphical processing units: Application to the effective core potential integrals and gradients. Journal of Chemical Theory and Computation, 12(1), 92–106. https://doi.org/10.1021/acs.jctc.5b00790
  • Šponer, J., Jurecka, P., & Hobza, P. (2004). Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. Journal of the American Chemical Society, 126(32), 10142–10151. https://doi.org/10.1021/ja048436s
  • Stofer, E., Chipot, C., & Lavery, R. (1999). Free energy calculations of Watson–Crick base pairing in aqueous solution. Journal of the American Chemical Society, 121(41), 9503–9508. https://doi.org/10.1021/ja991092z
  • Strunz, T., Oroszlan, K., Schäfer, R., & Güntherodt, H. J. (1999). Dynamic force spectroscopy of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11277–11282. https://doi.org/10.1073/pnas.96.20.11277
  • Tully, J. (1998). Mixed quantum–classical dynamics. Faraday Discussions, 110, 407–419. https://doi.org/10.1039/a801824c
  • Ufimtsev, I. S., & Martinez, T. J. (2009). Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. Journal of Chemical Theory and Computation, 5(10), 2619–2628. https://doi.org/10.1021/ct9003004
  • Van Gunsteren, W. F., & Berendsen, H. J. C. (1982). Algorithms for Brownian dynamics. Molecular Physics, 45(3), 637–647. https://doi.org/10.1080/00268978200100491
  • Vanden-Eijnden, E., & Ciccotti, G. (2006). Second-order integrators for Langevin equations with holonomic constraints. Chemical Physics Letters, 429(1–3), 310–316. https://doi.org/10.1016/j.cplett.2006.07.086
  • Yadav, S., Kumbhar, N., Jan, R., Roy, R., & Satsangi, P. G. (2019). Genotoxic effects of PM10 and PM2.5 bound metals: Metal bioaccessibility, free radical generation, and role of iron. Environmental Geochemistry and Health, 41(3), 1163–1186. https://doi.org/10.1007/s10653-018-0199-4
  • Yakovchuk, P., Protozanova, E., & Frank-Kamenetskii, M. D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Research, 34(2), 564–574. https://doi.org/10.1093/nar/gkj454
  • Yanson, I. K., Teplitsky, A. B., & Sukhodub, L. F. (1979). Experimental studies of molecular interactions between nitrogen bases of nucleic acids. Biopolymers, 18(5), 1149–1170. https://doi.org/10.1002/bip.1979.360180510
  • Zhang, T. B., Zhang, C. L., Dong, Z. L., & Guan, Y. F. (2015). Determination of base binding strength and base stacking interaction of DNA duplex using atomic force microscope. Scientific Reports, 5(1), 9143–9147. https://doi.org/10.1038/srep09143
  • Zou, S., Schönherr, H., & Vancso, G. (2005). Force spectroscopy of quadruple H-bonded dimers by AFM: Dynamic bond rupture and molecular time-temperature superposition. Journal of the American Chemical Society, 127(32), 11230–11231. https://doi.org/10.1021/ja0531475

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.