286
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Potential of tetradecyltrimethylammonium bromide in preventing fibrillation/aggregation of lysozyme: biophysical studies

& ORCID Icon
Pages 13378-13391 | Received 16 Jul 2021, Accepted 26 Sep 2021, Published online: 18 Oct 2021

References

  • Abelein, A., Kaspersen, J. D., Nielsen, S. B., Jensen, G. V., Christiansen, G., Pedersen, J. S., Danielsson, J., Otzen, D. E., & Gräslund, A. (2013). Formation of dynamic soluble surfactant-induced amyloid $β$peptide aggregation intermediates. The Journal of Biological Chemistry, 288(32), 23518–23528.
  • Alam, P., Chaturvedi, S. K., Siddiqi, M. K., Rajpoot, R. K., Ajmal, M. R., Zaman, M., & Khan, R. H. (2016). Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases. Scientific Reports, 6(1), 1–11. https://doi.org/10.1038/srep26759
  • Alam, P., Siddiqi, K., Chturvedi, S. K., & Khan, R. H. (2017). Protein aggregation: From background to inhibition strategies. International Journal of Biological Macromolecules, 103, 208–219.
  • Amdursky, N., Erez, Y., & Huppert, D. (2012). Molecular rotors: What lies behind the high sensitivity of the thioflavin-T fluorescent marker. Accounts of Chemical Research, 45(9), 1548–1557.
  • Amin, M. R., Mahbub, S., Hidayathulla, S., Alam, M. M., Hoque, M. A., & Rub, M. A. (2018). An estimation of the effect of mono/poly-hydroxy organic compounds on the interaction of tetradecyltrimethylammonium bromide with levofloxacin hemihydrate antibiotic drug. Journal of Molecular Liquids, 269, 417–425. https://doi.org/10.1016/j.molliq.2018.08.043
  • An, T.-T., Feng, S., & Zeng, C.-M. (2017). Oxidized epigallocatechin gallate inhibited lysozyme fibrillation more strongly than the native form. Redox Biology, 11, 315–321. https://doi.org/10.1016/j.redox.2016.12.016
  • Ashburn, T. T., Han, H., McGuinness, B. F., & Lansbury, P. T. Jr. (1996). Amyloid probes based on Congo Red distinguish between fibrils comprising different peptides. Chemistry & Biology, 3(5), 351–358.
  • Astbury, W. T., Dickinson, S., & Bailey, K. (1935). The X-ray interpretation of denaturation and the structure of the seed globulins. Biochemical Journal, 29(10), 2351–2360. https://doi.org/10.1042/bj0292351
  • Ban, D. K., & Paul, S. (2016). Nano zinc oxide inhibits fibrillar growth and suppresses cellular toxicity of lysozyme amyloid. ACS Applied Materials & Interfaces, 8(46), 31587–31601. https://doi.org/10.1021/acsami.6b11549
  • Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta, 1804(7), 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001
  • Buchanan, L. E., Dunkelberger, E. B., Tran, H. Q., Cheng, P.-N., Chiu, C.-C., Cao, P., Raleigh, D. P., De Pablo, J. J., Nowick, J. S., & Zanni, M. T. (2013). Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet . Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19285–19290. https://doi.org/10.1073/pnas.1314481110
  • Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75, 333–366.
  • Choudhary, S., & Kishore, N. (2014). Addressing mechanism of fibrillization/aggregation and its prevention in presence of osmolytes: Spectroscopic and calorimetric approach. PloS One, 9(8), e104600. https://doi.org/10.1371/journal.pone.0104600
  • Choudhary, S., Kishore, N., & Hosur, R. V. (2015). Inhibition of insulin fibrillation by osmolytes: Mechanistic Insights. Scientific Reports, 5(1), 1–10. https://doi.org/10.1038/srep17599
  • Choudhary, S., Save, S. N., Kishore, N., & Hosur, R. V. (2016). Synergistic inhibition of protein fibrillation by proline and sorbitol: Biophysical investigations. PloS One, 11(11), e0166487.
  • Cocke, D. L., Schennach, R., & Yu, Z. (2002). The surface properties of tetradecyltrimethylammonium bromide observed by capillary electrophoresis. Journal of Chromatographic Science, 40(4), 187–190.
  • Dizaji, N. M., Mohammad-Beigi, H., Aliakbari, F., Marvian, A. T., Shojaosadati, S. A., & Morshedi, D. (2016). Inhibition of lysozyme fibrillation by human serum albumin nanoparticles: Possible mechanism. International Journal of Biological Macromolecules, 93(Pt A), 1328–1336.
  • Dobson, C. M. (2001). The structural basis of protein folding and its links with human disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1406), 133–145.
  • DuBay, K. F., Pawar, A. P., Chiti, F., Zurdo, J., Dobson, C. M., & Vendruscolo, M. (2004). Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. Journal of Molecular Biology, 341(5), 1317–1326.
  • Dzwolak, W., & Pecul, M. (2005). Chiral bias of amyloid fibrils revealed by the twisted conformation of Thioflavin T: An induced circular dichroism/DFT study. FEBS Letters, 579(29), 6601–6603.
  • Gasymov, O. K., & Glasgow, B. J. (2007). ANS fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochimica et Biophysica Acta (Bba) – Proteins and Proteomics, 1774(3), 403–411. https://doi.org/10.1016/j.bbapap.2007.01.002
  • Ghosh, R., Raveendranath, R., & Kishore, N. (2021). Unraveling diverse action of triton X-100 and methimazole on lysozyme fibrillation/aggregation: Physicochemical insights. International Journal of Biological Macromolecules, 167, 736–745.
  • Groenning, M. (2010). Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils – Current status. Journal of Chemical Biology, 3(1), 1–18. https://doi.org/10.1007/s12154-009-0027-5
  • Haq, S. K., Rasheedi, S., & Khan, R. H. (2002). Characterization of a partially folded intermediate of stem bromelain at low pH. European Journal of Biochemistry, 269(1), 47–52. https://doi.org/10.1046/j.0014-2956.2002.02620.x
  • Hayakawa, K., Santerre, J. P., & Kwak, J. C. T. (1983). The binding of cationic surfactants by DNA. Biophysical Chemistry, 17(3), 175–181.
  • Heiser, V., Scherzinger, E., Boeddrich, A., Nordhoff, E., Lurz, R., Schugardt, N., Lehrach, H., & Wanker, E. E. (2000). Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: Implications for Huntington’s disease therapy. Proceedings of the National Academy of Sciences, 97(12), 6739–6744. https://doi.org/10.1073/pnas.110138997
  • Huang, Y., & Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. Cell, 148(6), 1204–1222.
  • Hung, Y.-T., Lin, M.-S., Chen, W.-Y., & Wang, S. S.-S. (2010). Investigating the effects of sodium dodecyl sulfate on the aggregative behavior of hen egg-white lysozyme at acidic pH. Colloids and Surfaces. B, Biointerfaces, 81(1), 141–151.
  • Jain, S., & Udgaonkar, J. B. (2010). Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein. Biochemistry, 49(35), 7615–7624.
  • Joshi, S., Perera, S., Gilbert, J., Smith, C. M., Mariana, A., Gordon, C. P., Sakoff, J. A., McCluskey, A., Robinson, P. J., Braithwaite, A. W., & Chircop, M. (2010). The dynamin inhibitors MiTMAB and OcTMAB induce cytokinesis failure and inhibit cell proliferation in human cancer cells. Molecular Cancer Therapeutics, 9(7), 1995–2006. https://doi.org/10.1158/1535-7163.MCT-10-0161
  • Khan, J. M., Chaturvedi, S. K., Rahman, S. K., Ishtikhar, M., Qadeer, A., Ahmad, E., & Khan, R. H. (2014). Protonation favors aggregation of lysozyme with SDS. Soft Matter, 10(15), 2591–2599.
  • Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S. A., Krishna, V., Grover, R. K., Roy, R., & Singh, S. (2005). Mechanism of thioflavin T binding to amyloid fibrils. Journal of Structural Biology, 151(3), 229–238.
  • Koo, E. H., Lansbury, P. T., & Kelly, J. W. (1999). Amyloid diseases: Abnormal protein aggregation in neurodegeneration. Proceedings of the National Academy of Sciences, 96(18), 9989–9990. https://doi.org/10.1073/pnas.96.18.9989
  • Kumari, A., Muthu, S. A., Prakash, P., & Ahmad, B. (2020). Herbalome of Chandraprabha vati, a polyherbal formulation of Ayurveda prevents fibrillation of lysozyme by stabilizing aggregation-prone intermediate state. International Journal of Biological Macromolecules, 148, 102–109.
  • Levine, H. III, (1993). Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: Detection of amyloid aggregation in solution . Protein Science: A Publication of the Protein Society, 2(3), 404–410. https://doi.org/10.1002/pro.5560020312
  • Maskevich, A. A., Stsiapura, V. I., Kuzmitsky, V. A., Kuznetsova, I. M., Povarova, O. I., Uversky, V. N., & Turoverov, K. K. (2007). Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. Journal of Proteome Research, 6(4), 1392–1401. https://doi.org/10.1021/pr0605567
  • Matulis, D., & Lovrien, R. (1998). 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophysical Journal, 74(1), 422–429.
  • Morshedi, D., Rezaei-Ghaleh, N., Ebrahim-Habibi, A., Ahmadian, S., & Nemat-Gorgani, M. (2007). Inhibition of amyloid fibrillation of lysozyme by indole derivatives – Possible mechanism of action. The FEBS Journal, 274(24), 6415–6425.
  • Mothi, N., Muthu, S. A., Kale, A., & Ahmad, B. (2015). Curcumin promotes fibril formation in F isomer of human serum albumin via amorphous aggregation. Biophysical Chemistry, 207, 30–39.
  • Mukhija, A., & Kishore, N. (2018a). Prevention and disintegration of human serum albumin fibrils under physiological conditions: Biophysical aspects. The Journal of Physical Chemistry B, 122(43), 9896–9906. https://doi.org/10.1021/acs.jpcb.8b07140
  • Mukhija, A., & Kishore, N. (2018b). Prevention of aggregation/fibrillation of human serum albumin by surfactant and anti-inflammatory drug under physiological conditions: Biophysical aspects. Biophysical Journal, 114(3), 589a–590a. https://doi.org/10.1016/j.bpj.2017.11.3224
  • Muzaffar, M., & Ahmad, A. (2011). The mechanism of enhanced insulin amyloid fibril formation by NaCl is better explained by a conformational change model. PloS One, 6(11), e27906.
  • Naiki, H., Higuchi, K., Hosokawa, M., & Takeda, T. (1989). Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T1. Analytical Biochemistry, 177(2), 244–249. https://doi.org/10.1016/0003-2697(89)90046-8
  • Naiki, H., Higuchi, K., Kitagawa, K., Shimada, A., Chen, W.-H., Hosokawa, M., Nakakuki, K., & Takeda, T. (1991). Fluorometric examination of tissue amyloid fibrils in murine senile amyloidosis: Use of the fluorescent indicator, thioflavine T1. In Amyloid and amyloidosis 1990 (pp. 393–396). Springer.
  • Nielsen, L., Khurana, R., Coats, A., Frokjaer, S., Brange, J., Vyas, S., Uversky, V. N., & Fink, A. L. (2001). Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry, 40(20), 6036–6046.
  • Pandey, N. K., Ghosh, S., & Dasgupta, S. (2013). Effect of surfactants on preformed fibrils of human serum albumin. International Journal of Biological Macromolecules, 59, 39–45.
  • Patel, P., Parmar, K., Patel, D., Kumar, S., Trivedi, M., & Das, M. (2018). Inhibition of amyloid fibril formation of lysozyme by ascorbic acid and a probable mechanism of action. International Journal of Biological Macromolecules, 114, 666–678. https://doi.org/10.1016/j.ijbiomac.2018.03.152
  • Ramazzotti, M., Melani, F., Marchi, L., Mulinacci, N., Gestri, S., Tiribilli, B., & Degl'Innocenti, D. (2016). Mechanisms for the inhibition of amyloid aggregation by small ligands. Bioscience Reports, 36(5). https://doi.org/10.1042/BSR20160101
  • Ross, C. A., & Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nature Medicine, 10(S7), S10–S17. https://doi.org/10.1038/nm1066
  • Sabulal, B., & Kishore, N. (1995). Differential scanning calorimetric study of the interactions of some stabilizing amino acids and oligopeptides with hen egg white lysozyme. Journal of the Chemical Society, Faraday Transactions, 91(14), 2101–2106. https://doi.org/10.1039/ft9959102101
  • Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas', A. F., & Gilmanshin, R. I. (1991). Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers: Original Research on Biomolecules, 31(1), 119–128. https://doi.org/10.1002/bip.360310111
  • Singla, R., Abidi, S. M. S., Dar, A. I., & Acharya, A. (2019). Inhibition of glycation-induced aggregation of human serum albumin by organic–inorganic hybrid nanocomposites of iron oxide-functionalized nanocellulose. ACS Omega, 4(12), 14805–14819.
  • Stryer, L. (1965). The interaction of a naphthalene dye with apomyoglobin and apohemoglobin: A fluorescent probe of non-polar binding sites. Journal of Molecular Biology, 13(2), 482–495. https://doi.org/10.1016/S0022-2836(65)80111-5
  • Stsiapura, V. I., Maskevich, A. A., Kuzmitsky, V. A., Turoverov, K. K., & Kuznetsova, I. M. (2007). Computational study of thioflavin T torsional relaxation in the excited state. The Journal of Physical Chemistry. A, 111(22), 4829–4835.
  • Swaminathan, R., Ravi, V. K., Kumar, S., Kumar, M. V. S., & Chandra, N. (2011). Lysozyme: A model protein for amyloid research. Advances in Protein Chemistry and Structural Biology, 84, 63–111.
  • Taboada, P., Barbosa, S., Castro, E., & Mosquera, V. (2006). Amyloid fibril formation and other aggregate species formed by human serum albumin association. The Journal of Physical Chemistry. B, 110(42), 20733–20736.
  • Thomas, P. J., Qu, B.-H., & Pedersen, P. L. (1995). Defective protein folding as a basis of human disease. Trends in Biochemical Sciences, 20(11), 456–459.
  • Velicelebi, G., & Sturtevant, J. M. (1979). Thermodynamics of the denaturation of lysozyme in alcohol–water mixtures. Biochemistry, 18(7), 1180–1186.
  • Vieira, O. V., Hartmann, D. O., Cardoso, C. M. P., Oberdoerfer, D., Baptista, M., Santos, M. A. S., Almeida, L., Ramalho-Santos, J., & Vaz, W. L. C. (2008). Surfactants as microbicides and contraceptive agents: A systematic in vitro study. PLoS One, 3(8), e2913.
  • Wang, S. S.-S., Hung, Y.-T., Wen, W.-S., Lin, K.-C., & Chen, G.-Y. (2011). Exploring the inhibitory activity of short-chain phospholipids against amyloid fibrillogenesis of hen egg-white lysozyme. Biochimica et Biophysica Acta, 1811(5), 301–313. https://doi.org/10.1016/j.bbalip.2011.02.003
  • Wang, S. S.-S., Liu, K.-N., & Han, T.-C. (2010). Amyloid fibrillation and cytotoxicity of insulin are inhibited by the amphiphilic surfactants. Biochimica et Biophysica Acta, 1802(6), 519–530. https://doi.org/10.1016/j.bbadis.2010.02.008
  • Wang, S. S.-S., Liu, K.-N., & Lu, Y.-C. (2009). Amyloid fibrillation of hen egg-white lysozyme is inhibited by. Biochemical and Biophysical Research Communications, 381(4), 639–642.
  • Wang, W., Nema, S., & Teagarden, D. (2010). Protein aggregation—Pathways and influencing factors. International Journal of Pharmaceutics, 390(2), 89–99.
  • Wawer, J., Krakowiak, J., Szociński, M., Lustig, Z., Olszewski, M., & Szostak, K. (2014). Inhibition of amyloid fibril formation of hen egg white lysozyme by trimethylamine N-oxide at low pH. International Journal of Biological Macromolecules, 70, 214–221. https://doi.org/10.1016/j.ijbiomac.2014.06.057
  • Welzel, A. T., & Walsh, D. M. (2011). Aberrant protein structure and diseases of the brain. Irish Journal of Medical Science, 180(1), 15–22.
  • Wu, J. W., Liu, K.-N., How, S.-C., Chen, W.-A., Lai, C.-M., Liu, H.-S., Hu, C.-J., & Wang, S. S.-S. (2013). Carnosine's effect on amyloid fibril formation and induced cytotoxicity of lysozyme. PloS One, 8(12), e81982. https://doi.org/10.1371/journal.pone.0081982
  • Yakupova, E. I., Bobyleva, L. G., Vikhlyantsev, I. M., & Bobylev, A. G. (2019). Congo Red and amyloids: History and relationship. Bioscience Reports, 39(1):BSR20181415. https://doi.org/10.1042/BSR20181415
  • Yoshimura, Y., Lin, Y., Yagi, H., Lee, Y.-H., Kitayama, H., Sakurai, K., So, M., Ogi, H., Naiki, H., & Goto, Y. (2012). Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proceedings of the National Academy of Sciences, 109(36), 14446–14451. https://doi.org/10.1073/pnas.1208228109
  • Zeng, H., Miao, M., Yang, R., & Qu, L. (2017). Effect of silybin on the fibrillation of hen egg-white lysozyme. Journal of Molecular Recognition, 30(1), e2566. https://doi.org/10.1002/jmr.2566

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.