149
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

PEG mediated destabilization of holo α-lactalbumin probed by in silico and in vitro studies: deviation from excluded volume effect

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 13265-13277 | Received 22 Aug 2021, Accepted 21 Sep 2021, Published online: 02 Nov 2021

References

  • Akabayov, B., Akabayov, S. R., Lee, S. J., Wagner, G., & Richardson, C. C. (2013). Impact of macromolecular crowding on DNA replication. Nature Communications, 4, 1615. https://doi.org/10.1038/ncomms2620
  • Arunkumar, R., Drummond, C. J., & Greaves, T. L. (2019). FTIR spectroscopic study of the secondary structure of globular proteins in aqueous protic ionic liquids. Frontiers in Chemistry, 7(74), 74.
  • Bhat, R., & Timasheff, S. N. (1992). Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Science : a Publication of the Protein Society, 1(9), 1133–1143. https://doi.org/10.1002/pro.5560010907
  • Bloustine, J., Virmani, T., Thurston, G. M., & Fraden, S. (2006). Light scattering and phase behavior of lysozyme-poly(ethylene glycol) mixtures. Physical Review Letters, 96(8), 087803.
  • Buscaglia, R., Miller, M. C., Dean, W. L., Gray, R. D., Lane, A. N., Trent, J. O., & Chaires, J. B. (2013). Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection. Nucleic Acids Research, 41(16), 7934–7946. https://doi.org/10.1093/nar/gkt440
  • Cayley, S., Lewis, B. A., Guttman, H. J., & Record, M. T. Jr. (1991). Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. Journal of Molecular Biology, 222(2), 281–300. https://doi.org/10.1016/0022-2836(91)90212-O
  • Charlton, L. M., Barnes, C. O., Li, C., Orans, J., Young, G. B., & Pielak, G. J. (2008). Residue-level interrogation of macromolecular crowding effects on protein stability. Journal of the American Chemical Society, 130(21), 6826–6830. https://doi.org/10.1021/ja8005995
  • Christiansen, A., Wang, Q., Samiotakis, A., Cheung, M. S., & Wittung-Stafshede, P. (2010). Factors defining effects of macromolecular crowding on protein stability: An in vitro/in silico case study using cytochrome c. Biochemistry, 49(31), 6519–6530. https://doi.org/10.1021/bi100578x
  • Christiansen, A., & Wittung-Stafshede, P. (2013). Quantification of excluded volume effects on the folding landscape of Pseudomonas aeruginosa apoazurin in vitro. Biophysical Journal, 105(7), 1689–1699. https://doi.org/10.1016/j.bpj.2013.08.038
  • Cohen, R. D., Guseman, A. J., & Pielak, G. J. (2015). Intracellular pH modulates quinary structure. Protein Science : a Publication of the Protein Society, 24(11), 1748–1755. https://doi.org/10.1002/pro.2765
  • Cohen, R. D., & Pielak, G. J. (2017). Quinary interactions with an unfolded state ensemble. Protein Science : A Publication of the Protein Society, 26(9), 1698–1703. https://doi.org/10.1002/pro.3206
  • Danielsson, J., Mu, X., Lang, L., Wang, H., Binolfi, A., Theillet, F. X., Bekei, B., Logan, D. T., Selenko, P., Wennerstrom, H., & Oliveberg, M. (2015). Thermodynamics of protein destabilization in live cells. Proceedings of the National Academy of Sciences of the United States of America, 112(40), 12402–12407. https://doi.org/10.1073/pnas.1511308112
  • Davis, C. M., Gruebele, M., & Sukenik, S. (2018). How does solvation in the cell affect protein folding and binding? Current Opinion in Structural Biology, 48, 23–29. https://doi.org/10.1016/j.sbi.2017.09.003
  • Dedmon, M. M., Patel, C. N., Young, G. B., & Pielak, G. J. (2002). FlgM gains structure in living cells. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12681–12684. https://doi.org/10.1073/pnas.202331299
  • Du, F., Zhou, Z., Mo, Z. Y., Shi, J. Z., Chen, J., & Liang, Y. (2006). Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: Implications for protein folding in physiological environments. Journal of Molecular Biology, 364(3), 469–482. https://doi.org/10.1016/j.jmb.2006.09.018
  • Dupuis, N. F., Holmstrom, E. D., & Nesbitt, D. J. (2014). Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8464–8469. https://doi.org/10.1073/pnas.1316039111
  • Echeverria, C., & Kapral, R. (2012). Molecular crowding and protein enzymatic dynamics. Physical Chemistry Chemical Physics : PCCP, 14(19), 6755–6763. https://doi.org/10.1039/c2cp40200a
  • Ellis, R. J. (2001). Macromolecular crowding: Obvious but underappreciated. Trends in Biochemical Sciences, 26(10), 597–604. https://doi.org/10.1016/S0968-0004(01)01938-7
  • Ellis, R. J., & Minton, A. P. (2006). Protein aggregation in crowded environments. Biological Chemistry, 387(5), 485–497.
  • Farruggia, B., Garcia, G., D'Angelo, C., & Pico, G. (1997). Destabilization of human serum albumin by polyethylene glycols studied by thermodynamical equilibrium and kinetic approaches. International Journal of Biological Macromolecules, 20(1), 43–51. https://doi.org/10.1016/S0141-8130(96)01150-6
  • Fulton, A. B. (1982). How crowded is the cytoplasm? Cell, 30(2), 345–347. https://doi.org/10.1016/0092-8674(82)90231-8
  • Gnutt, D., & Ebbinghaus, S. (2016). The macromolecular crowding effect-from in vitro into the cell. Biological Chemistry, 397(1), 37–44. https://doi.org/10.1515/hsz-2015-0161
  • Gnutt, D., Timr, S., Ahlers, J., Konig, B., Manderfeld, E., Heyden, M., Sterpone, F., & Ebbinghaus, S. (2019). Stability Effect of Quinary Interactions Reversed by Single Point Mutations. Journal of the American Chemical Society, 141(11), 4660–4669. https://doi.org/10.1021/jacs.8b13025
  • Gopan, G., Gruebele, M., & Rickard, M. (2021). In-cell protein landscapes: Making the match between theory, simulation and experiment. Current Opinion in Structural Biology, 66, 163–169.
  • Guseman, A. J., Speer, S. L., Perez Goncalves, G. M., & Pielak, G. J. (2018). Surface Charge Modulates Protein-Protein Interactions in Physiologically Relevant Environments. Biochemistry, 57(11), 1681–1684. https://doi.org/10.1021/acs.biochem.8b00061
  • Hermans, J. (1982). Excluded‐Volume theory of polymer–protein interactions based on polymer chain statistics. The Journal of Chemical Physics, 77(4), 2193–2203. https://doi.org/10.1063/1.444026
  • Jarvis, T. C., Ring, D. M., Daube, S. S., & von Hippel, P. H. (1990). Macromolecular crowding: Thermodynamic consequences for protein-protein interactions within the T4 DNA replication complex. The Journal of Biological Chemistry, 265(25), 15160–15167. https://doi.org/10.1016/S0021-9258(18)77236-0
  • Kinjo, A. R., & Takada, S. (2003). Competition between protein folding and aggregation with molecular chaperones in crowded solutions: Insight from mesoscopic simulations. Biophysical Journal, 85(6), 3521–3531. https://doi.org/10.1016/S0006-3495(03)74772-9
  • Knowles, D. B., LaCroix, A. S., Deines, N. F., Shkel, I., & Record, M. T. Jr. (2011). Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12699–12704. https://doi.org/10.1073/pnas.1103382108
  • Knowles, D. B., Shkel, I. A., Phan, N. M., Sternke, M., Lingeman, E., Cheng, X., Cheng, L., O'Connor, K., & Record, M. T. (2015). Chemical interactions of polyethylene glycols (PEGs) and glycerol with protein functional groups: applications to effects of peg and glycerol on protein processes. Biochemistry, 54(22), 3528–3542. https://doi.org/10.1021/acs.biochem.5b00246
  • Kuznetsova, I. M., Zaslavsky, B. Y., Breydo, L., Turoverov, K. K., & Uversky, V. N. (2015). Beyond the excluded volume effects: Mechanistic complexity of the crowded milieu. Molecules (Basel, Switzerland), 20(1), 1377–1409. https://doi.org/10.3390/molecules20011377
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Le Coeur, C., Teixeira, J., Busch, P., & Longeville, S. (2010). Compression of random coils due to macromolecular crowding: Scaling effects. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 81(6 Pt 1), 061914.
  • Luh, L. M., Hansel, R., Lohr, F., Kirchner, D. K., Krauskopf, K., Pitzius, S., Schafer, B., Tufar, P., Corbeski, I., Guntert, P., & Dotsch, V. (2013). Molecular crowding drives active Pin1 into nonspecific complexes with endogenous proteins prior to substrate recognition . Journal of the American Chemical Society, 135(37), 13796–13803. https://doi.org/10.1021/ja405244v
  • Luo, X. D., Kong, F. L., Dang, H. B., Chen, J., & Liang, Y. (2016). Macromolecular crowding favors the fibrillization of beta2-microglobulin by accelerating the nucleation step and inhibiting fibril disassembly. Biochimica et Biophysica Acta, 1864(11), 1609–1619.
  • Macdonald, B., McCarley, S., Noeen, S., & van Giessen, A. E. (2015). Protein-protein interactions affect alpha helix stability in crowded environments. The Journal of Physical Chemistry. B, 119(7), 2956–2967. https://doi.org/10.1021/jp512630s
  • Martin, J. (2002). Requirement for GroEL/GroES-dependent protein folding under nonpermissive conditions of macromolecular crowding. Biochemistry, 41(15), 5050–5055. https://doi.org/10.1021/bi015925l
  • McConkey, E. H. (1982). Molecular evolution, intracellular organization, and the quinary structure of proteins. Proceedings of the National Academy of Sciences of the United States of America, 79(10), 3236–3240.
  • Miklos, A. C., Li, C., Sharaf, N. G., & Pielak, G. J. (2010). Volume exclusion and soft interaction effects on protein stability under crowded conditions. Biochemistry, 49(33), 6984–6991. https://doi.org/10.1021/bi100727y
  • Miklos, A. C., Sarkar, M., Wang, Y., & Pielak, G. J. (2011). Protein crowding tunes protein stability. Journal of the American Chemical Society, 133(18), 7116–7120. https://doi.org/10.1021/ja200067p
  • Minton, A. P. (1983). The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences. Molecular and Cellular Biochemistry, 55(2), 119–140. https://doi.org/10.1007/BF00673707
  • Minton, A. P. (2000). Implications of macromolecular crowding for protein assembly. Current Opinion in Structural Biology, 10(1), 34–39. https://doi.org/10.1016/S0959-440X(99)00045-7
  • Minton, A. P. (2005). Influence of macromolecular crowding upon the stability and state of association of proteins: Predictions and observations. Journal of Pharmaceutical Sciences, 94(8), 1668–1675. https://doi.org/10.1002/jps.20417
  • Minton, A. P. (2005). Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophysical Journal, 88(2), 971–985. https://doi.org/10.1529/biophysj.104.050351
  • Minton, A. P. (2006). How can biochemical reactions within cells differ from those in test tubes? Journal of Cell Science, 119(Pt 14), 2863–2869. https://doi.org/10.1242/jcs.03063
  • Mittal, S., & Singh, L. R. (2013). Denatured state structural property determines protein stabilization by macromolecular crowding: A thermodynamic and structural approach. PLoS One, 8(11), e78936. https://doi.org/10.1371/journal.pone.0078936
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Pelton, J. T., & McLean, L. R. (2000). Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry, 277(2), 167–176. https://doi.org/10.1006/abio.1999.4320
  • Perham, M., Stagg, L., & Wittung-Stafshede, P. (2007). Macromolecular crowding increases structural content of folded proteins. FEBS Letters, 581(26), 5065–5069. https://doi.org/10.1016/j.febslet.2007.09.049
  • Permyakov, E. A. (2020). Alpha-Lactalbumin, amazing calcium-binding protein. Biomolecules, 10(9), 1210. https://doi.org/10.3390/biom10091210
  • Permyakov, E. A., & Berliner, L. J. (2000). Alpha-Lactalbumin: structure and function. FEBS Letters, 473(3), 269–274. https://doi.org/10.1016/S0014-5793(00)01546-5
  • Poklar, N., Vesnaver, G., & Lapanje, S. (1994). Denaturation behavior of alpha-chymotrypsinogen A in urea and alkylurea solutions: fluorescence studies. Journal of Protein Chemistry, 13(3), 323–331. https://doi.org/10.1007/BF01901565
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Qu, Y., & Bolen, D. W. (2002). Efficacy of macromolecular crowding in forcing proteins to fold. Biophysical Chemistry, 101-102, 155–165. https://doi.org/10.1016/S0301-4622(02)00148-5
  • Raina, N., Singh, A. K., Hassan, M. I., Ahmad, F., & Islam, A. (2020). Concentration dependent effect of ethylene glycol on the structure and stability of holo α-lactalbumin: Characterization of intermediate state amidst soft interactions. International Journal of Biological Macromolecules, 164, 2151–2161. https://doi.org/10.1016/j.ijbiomac.2020.07.224
  • Ramboarina, S., & Redfield, C. (2003). Structural characterisation of the human alpha-lactalbumin molten globule at high temperature. Journal of Molecular Biology, 330(5), 1177–1188. https://doi.org/10.1016/S0022-2836(03)00639-9
  • Rath, E. M., Duff, A. P., Hakansson, A. P., Knott, R. B., & Church, W. B. (2014). Small-angle X-ray scattering of BAMLET at pH 12: A complex of α-lactalbumin and oleic acid . Proteins, 82(7), 1400–1408. https://doi.org/10.1002/prot.24508
  • Reddy, M. K., Weitzel, S. E., Daube, S. S., Jarvis, T. C., & von Hippel, P. H. (1995). Using macromolecular crowding agents to identify weak interactions within DNA replication complexes. Methods in Enzymology, 262, 466–476.
  • Ribeiro, S., Ebbinghaus, S., & Marcos, J. C. (2018). Protein folding and quinary interactions: Creating cellular organisation through functional disorder. FEBS Letters, 592(18), 3040–3053. https://doi.org/10.1002/1873-3468.13211
  • Rivas, G., Fernandez, J. A., & Minton, A. P. (1999). Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance. Biochemistry, 38(29), 9379–9388. https://doi.org/10.1021/bi990355z
  • Rivas, G., Fernandez, J. A., & Minton, A. P. (2001). Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: Indefinite linear self-association of bacterial cell division protein FtsZ. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3150–3155. https://doi.org/10.1073/pnas.051634398
  • Rivas, G., & Minton, A. P. (2016). Macromolecular Crowding In Vitro. Trends in Biochemical Sciences, 41(11), 970–981.
  • Safar, J., Roller, P. P., Gajdusek, D. C., & Gibbs, C. J. Jr. (1993). Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. The Journal of Biological Chemistry, 268(27), 20276–20284.
  • Safar, J., Roller, P. P., Gajdusek, D. C., & Gibbs, C. J. Jr. (1994). Scrapie amyloid (prion) protein has the conformational characteristics of an aggregated molten globule folding intermediate. Biochemistry, 33(27), 8375–8383. https://doi.org/10.1021/bi00193a027
  • Samanta, N., Das Mahanta, D., Patra, A., & Mitra, R. K. (2018). Soft interaction and excluded volume effect compete as polyethylene glycols modulate enzyme activity. International Journal of Biological Macromolecules, 118(Pt A), 209–215. https://doi.org/10.1016/j.ijbiomac.2018.06.073
  • Sarkar, M., Li, C., & Pielak, G. J. (2013). Soft interactions and crowding. Biophysical Reviews, 5(2), 187–194. https://doi.org/10.1007/s12551-013-0104-4
  • Sarkar, M., Lu, J., & Pielak, G. J. (2014). Protein crowder charge and protein stability. Biochemistry, 53(10), 1601–1606. https://doi.org/10.1021/bi4016346
  • Sasahara, K., McPhie, P., & Minton, A. P. (2003). Effect of dextran on protein stability and conformation attributed to macromolecular crowding. Journal of Molecular Biology, 326(4), 1227–1237. https://doi.org/10.1016/S0022-2836(02)01443-2
  • Schlesinger, A. P., Wang, Y., Tadeo, X., Millet, O., & Pielak, G. J. (2011). Macromolecular crowding fails to fold a globular protein in cells. Journal of the American Chemical Society, 133(21), 8082–8085. https://doi.org/10.1021/ja201206t
  • Senske, M., Tork, L., Born, B., Havenith, M., Herrmann, C., & Ebbinghaus, S. (2014). Protein stabilization by macromolecular crowding through enthalpy rather than entropy. Journal of the American Chemical Society, 136(25), 9036–9041. https://doi.org/10.1021/ja503205y
  • Smith, A. E., Zhou, L. Z., Gorensek, A. H., Senske, M., & Pielak, G. J. (2016). In-cell thermodynamics and a new role for protein surfaces. Proceedings of the National Academy of Sciences of the United States of America, 113(7), 1725–1730. https://doi.org/10.1073/pnas.1518620113
  • Spencer, D. S., Xu, K., Logan, T. M., & Zhou, H. X. (2005). Effects of pH, salt, and macromolecular crowding on the stability of FK506-binding protein: An integrated experimental and theoretical study. Journal of Molecular Biology, 351(1), 219–232.
  • Stagg, L., Zhang, S. Q., Cheung, M. S., & Wittung-Stafshede, P. (2007). Molecular crowding enhances native structure and stability of alpha/beta protein flavodoxin. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 18976–18981.
  • Sukenik, S., Sapir, L., & Harries, D. (2013). Balance of enthalpy and entropy in depletion forces. Current Opinion in Colloid and Interface Science., 18(6), 495–501. https://doi.org/10.1016/j.cocis.2013.10.002
  • Svensson, M., Hakansson, A., Mossberg, A. K., Linse, S., & Svanborg, C. (2000). Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4221–4226. https://doi.org/10.1073/pnas.97.8.4221
  • Taneja, S., & Ahmad, F. (1994). Increased thermal stability of proteins in the presence of amino acids. Biochemical Journal, 303 (1), 147–153. https://doi.org/10.1042/bj3030147
  • Tokuriki, N., Kinjo, M., Negi, S., Hoshino, M., Goto, Y., Urabe, I., & Yomo, T. (2004). Protein folding by the effects of macromolecular crowding. Protein Science: A Publication of the Protein Society, 13(1), 125–133. https://doi.org/10.1110/ps.03288104
  • Tubio, G., Nerli, B., & Pico, G. (2004). Relationship between the protein surface hydrophobicity and its partitioning behaviour in aqueous two-phase systems of polyethyleneglycol-dextran. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 799(2), 293–301. https://doi.org/10.1016/j.jchromb.2003.10.060
  • van den Berg, B., Ellis, R. J., & Dobson, C. M. (1999). Effects of macromolecular crowding on protein folding and aggregation. The EMBO Journal, 18(24), 6927–6933. https://doi.org/10.1093/emboj/18.24.6927
  • van den Berg, B., Wain, R., Dobson, C. M., & Ellis, R. J. (2000). Macromolecular crowding perturbs protein refolding kinetics: Implications for folding inside the cell. The EMBO Journal, 19(15), 3870–3875. https://doi.org/10.1093/emboj/19.15.3870
  • Verma, P. K., Kundu, A., Ha, J. H., & Cho, M. (2016). Water dynamics in cytoplasm-like crowded environment correlates with the conformational transition of the macromolecular Crowder. Journal of the American Chemical Society, 138(49), 16081–16088. https://doi.org/10.1021/jacs.6b10164
  • Wen, H., Glomm, W. R., & Halskau, O. (2013). Cytotoxicity of bovine alpha-lactalbumin: Oleic acid complexes correlates with the disruption of lipid membranes. Biochimica et Biophysica Acta, 1828(11), 2691–2699.
  • Wilcox, K. E., Blanch, E. W., & Doig, A. J. (2016). Determination of protein secondary structure from infrared spectra using partial least-squares regression. Biochemistry, 55(27), 3794–3802. https://doi.org/10.1021/acs.biochem.6b00403
  • Winzor, D. J., & Wills, P. R. (2006). Molecular crowding effects of linear polymers in protein solutions. Biophysical Chemistry, 119(2), 186–195. https://doi.org/10.1016/j.bpc.2005.08.001
  • Wirth, A. J., & Gruebele, M. (2013). Quinary protein structure and the consequences of crowding in living cells: Leaving the test-tube behind. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 35(11), 984–993. https://doi.org/10.1002/bies.201300080
  • Yarramala, D. S., Prakash, P., Ranade, D. S., Doshi, S., Kulkarni, P. P., Bhaumik, P., & Rao, C. P. (2019). Cytotoxicity of apo bovine α-lactalbumin complexed with La3+ on cancer cells supported by its high resolution crystal structure. Scientific Reports, 9(1), 1780. https://doi.org/10.1038/s41598-018-38024-1
  • Yu, I., Mori, T., Ando, T., Harada, R., Jung, J., Sugita, Y., & Feig, M. (2016). Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife, 5,e19274. https://doi.org/10.7554/eLife.19274
  • Zhang, D. L., Wu, L. J., Chen, J., & Liang, Y. (2012). Effects of macromolecular crowding on the structural stability of human α-lactalbumin. Acta Biochimica et Biophysica Sinica, 44(8), 703–711. https://doi.org/10.1093/abbs/gms052
  • Zhou, Y., & Hall, C. K. (1998). Solute excluded-volume effects on the stability of globular proteins: A statistical thermodynamic theory. Biopolymers, 38(2), 273–284. https://doi.org/10.1002/(SICI)1097-0282(199602)38:2<273::AID-BIP11>3.0.CO;2-G
  • Zhou, B. R., Liang, Y., Du, F., Zhou, Z., & Chen, J. (2004). Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme: Implications for protein folding in intracellular environments. The Journal of Biological Chemistry, 279(53), 55109–55116.
  • Zhou, H. X., Rivas, G., & Minton, A. P. (2008). Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annual Review of Biophysics, 37, 375–397.
  • Zhou, Z., Yan, X., Pan, K., Chen, J., Xie, Z. S., Xiao, G. F., Yang, F. Q., & Liang, Y. (2011). Fibril formation of the rabbit/human/bovine prion proteins. Biophysical Journal, 101(6), 1483–1492. https://doi.org/10.1016/j.bpj.2011.08.018
  • Zimmerman, S. B., & Minton, A. P. (1993). Macromolecular crowding: Biochemical, biophysical, and physiological consequences. Annual Review of Biophysics and Biomolecular Structure, 22, 27–65.
  • Zimmerman, S. B., & Trach, S. O. (1991). Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. Journal of Molecular Biology, 222(3), 599–620. https://doi.org/10.1016/0022-2836(91)90499-V

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.