1,163
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Exploring the interaction mechanism between potential inhibitor and multi-target Mur enzymes of mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation

, &
Pages 13497-13526 | Received 14 Aug 2021, Accepted 29 Sep 2021, Published online: 18 Oct 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Pálla, P., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25.
  • Alhaji Isa, M., Majumdhar, R., Haider, S., & Kandasamy, S. (2018). Molecular modelling and dynamic simulation of UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA) from Mycobacterium tuberculosis using in silico approach. Journal of Biomedical Informatics, 12, 56–66. https://doi.org/10.1016/j.imu.2018.06.007
  • Anuradha, C. M., Mulakayala, C., Babajan, B., Naveen, M., Rajasekhar, C., & Kumar, C. S. (2010). Probing ligand binding modes of Mycobacterium tuberculosis MurC ligase by molecular modeling, dynamics simulation and docking. Journal of Molecular Modeling, 16(1), 77–85. https://doi.org/10.1007/s00894-009-0521-2
  • Arvind, A., Kumar, V., Saravanan, P., & Mohan, C. G. (2012). Homology modeling, molecular dynamics and inhibitor binding study on MurD ligase of Mycobacterium tuberculosis. Interdisciplinary Sciences: Computational Life Sciences, 4(3), 223–‐238. https://doi.org/10.1007/s12539-012-0133-x
  • Basavannacharya, C., Moody, P. R., Munshi, T., Cronin, N., Keep, N. H., & Bhakta, S. (2010). Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis. Protein & Cell, 1(11), 1011–1022. https://doi.org/10.1007/s13238-010-0132-9
  • Benson, T. E., Walsh, C. T., & Hogle, J. M. (1996). The structure of the substrate-free form of MurB, an essential enzyme for the synthesis of bacterial cell walls. Structure (London, England: 1993), 4(1), 47–54. https://doi.org/10.1016/s0969-2126(96)00008-1
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1978). The Protein Data Bank: A computer-based archival file for macromolecular structures. Archives of Biochemistry and Biophysics, 185(2), 584–591. https://doi.org/10.1016/0003-9861(78)90204-7
  • Catalão, M. J., Filipe, S. R., & Pimentel, M. (2019). Revisiting anti-tuberculosis therapeutic strategies that target the peptidoglycan structure and synthesis. Frontiers in Microbiology, 10, 190. https://doi.org/10.3389/fmicb.2019.00190
  • Chakkyarath, V., & Natarajan, J. (2019). Identification of Ideal multi-targeting bioactive compounds against mur ligases of Enterobacter aerogenes and its binding mechanism in comparison with chemical inhibitors. Interdisciplinary Sciences, Computational Life Sciences, 11(1), 135–144. https://doi.org/10.1007/s12539-017-0261-4.
  • Chiu, S. W., Pandit, S. A., Scott, H. L., & Jakobsson, E. (2009). An improved united atom force field for simulation of mixed lipid bilayers. The Journal of Physical Chemistry. B, 113(9), 2748–2763. https://doi.org/10.1021/jp807056c
  • Chung, B. C., Zhao, J., Gillespie, R. A., Kwon, D. Y., Guan, Z., Hong, J., Zhou, P., & Lee, S. Y. (2013). Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science, 341(6149), 1012–1016. Y.), . https://doi.org/10.1126/science.1236501
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on, 40, 82–92.
  • Eniyan, K., Kumar, A., Rayasam, G. V., Perdih, A., & Bajpai, U. (2016). Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis. Scientific Reports, 6, 35134. https://doi.org/10.1038/srep35134.
  • Fakhar, Z., Naiker, S., Alves, C. N., Govender, T., Maguire, G. E., Lameira, J., Lamichhane, G., Kruger, H. G., & Honarparvar, B. (2016). A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. Journal of Biomolecular Structure & Dynamics, 34(11), 2399–2417.
  • Fiser, A., & Sali, A. (2003). Modeller: Generation and refinement of homology-based protein structure models. Methods in Enzymology, 374, 461–491. https://doi.org/10.1016/S0076-6879(03)74020-8
  • Forrellad, M. A., Klepp, L. I., Gioffré, A., Sabio y García, J., Morbidoni, H. R., de la, P., Santangelo, M., Cataldi, A. A., & Bigi, F. (2013). Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 4(1), 3–66. https://doi.org/10.4161/viru.22329
  • García-Heredia, A., Pohane, A. A., Melzer, E. S., Carr, C. R., Fiolek, T. J., Rundell, S. R., Lim, H. C., Wagner, J. C., Morita, Y. S., Swarts, B. M., & Siegrist, M. S. (2018). Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria. eLife, 7, e37243. https://doi.org/10.7554/eLife.37243
  • Ghosh, A., & Vishveshwara, S. (2007). A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15711–15716. doi: 10.1073/pnas.0704459104
  • Griffin, J. E., Gawronski, J. D., Dejesus, M. A., Ioerger, T. R., Akerley, B. J., & Sassetti, C. M. (2011). High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathogens, 7(9), e1002251. https://doi.org/10.1371/journal.ppat.1002251
  • Ha, S., Walker, D., Shi, Y., & Walker, S. (2000). The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Science, 9(6), 1045–1052. https://doi.org/10.1110/ps.9.6.1045
  • Jarlier, V., & Nikaido, H. (1994). Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiology Letters, 123(1-2), 11–18. https://doi.org/10.1111/j.1574-6968.1994.tb07194.x
  • Kim, D. H., Lees, W. J., Kempsell, K. E., Lane, W. S., Duncan, K., & Walsh, C. T. (1996). Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry, 35(15), 4923–4928. https://doi.org/10.1021/bi952937w
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., Cheatham, T. E. 3rd., &, (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j.
  • Kotnik, M., Humljan, J., Contreras-Martel, C., Oblak, M., Kristan, K., Hervé, M., Blanot, D., Urleb, U., Gobec, S., Dessen, A., & Solmajer, T. (2007). Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. Journal of Molecular Biology., 370(1), 107–115., https://doi.org/10.1016/j.jmb.2007.04.048
  • Kouidmi, I., Levesque, R. C., & Paradis-Bleau, C. (2014). The biology of Mur ligases as an antibacterial target. Molecular Microbiology, 94(2), 242–253.
  • Kumar, V., Saravanan, P., Arvind, A., & Mohan, C. G. (2011). Identification of hotspot regions of MurB oxidoreductase enzyme using homology modeling, molecular dynamics and molecular docking techniques. Journal of Molecular Modeling, 17(5), 939–953.
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kumari, M., & Subbarao, N. (2021). Identification of novel multi-target antitubercular inhibitors against mycobacterial peptidoglycan biosynthetic Mur enzymes by structure-based virtual screening. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2021.1908913.
  • Lange, O. F., Grubmüller, H., & de Groot, B. L. (2005). Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions. Angewandte Chemie (International ed. in English), 44(22), 3394–3399. https://doi.org/10.1002/anie.200462957
  • Liu, M., Wang, L., Sun, X., & Zhao, X. (2014). Investigating the impact of Asp181 point mutations on interactions between PTP1B and phosphotyrosine substrate. Scientific Reports, 4, 5095. doi: 10.1038/srep05095
  • Longenecker, K. L., Stamper, G. F., Hajduk, P. J., Fry, E. H., Jakob, C. G., Harlan, J. E., Edalji, R., Bartley, D. M., Walter, K. A., Solomon, L. R., Holzman, T. F., Gu, Y. G., Lerner, C. G., Beutel, B. A., & Stoll, V. S. (2005). Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Science : a Publication of the Protein Society, 14(12), 3039–3047. https://doi.org/10.1110/ps.051604805
  • Maitra, A., Munshi, T., Healy, J., Martin, L. T., Vollmer, W., Keep, N. H., & Bhakta, S. (2019). Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiology Reviews, 43(5), 548–575. https://doi.org/10.1093/femsre/fuz016.
  • Mohammadi, T., Karczmarek, A., Crouvoisier, M., Bouhss, A., Mengin-Lecreulx, D., & Den Blaauwen, T. (2007). The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Molecular Microbiology, 65(4), 1106–1121.
  • Moraes, G. L., Gomes, G. C., Monteiro de Sousa, P. R., Alves, C. N., Govender, T., Kruger, H. G., Maguire, G. E., Lamichhane, G., & Lameira, J. (2015). Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Tuberculosis (Tuberculosis), 95(2), 95–111. https://doi.org/10.1016/j.tube.2015.01.006
  • Mount D. W. (2007). Using the Basic Local Alignment Search Tool (BLAST). CSH protocols, 2007, pdb.top17.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Poen, S., Nakatani, Y., Opel-Reading, H. K., Lassé, M., Dobson, R. C., & Krause, K. L. (2016). Exploring the structure of glutamate racemase from Mycobacterium tuberculosis as a template for anti-mycobacterial drug discovery. The Biochemical Journal, 473(9), 1267–1280.
  • Sadowski, J., Gasteiger, J., & Klebe, G. (1994). Comparison of automatic three-dimensional model builders using 639 X-ray structures. Journal of Chemical Information and Modeling, 34, 4.
  • Sassetti, C. M., Boyd, D. H., & Rubin, E. J. (2003). Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology, 48(1), 77–84. https://doi.org/10.1046/j.1365-2958.2003.03425.x.
  • Shapiro, A. B., Jahić, H., Gao, N., Hajec, L., & Rivin, O. (2012). A high-throughput, homogeneous, fluorescence resonance energy transfer-based assay for phospho-N-acetylmuramoyl-pentapeptide translocase (MraY). Journal of Biomolecular Screening, 17(5), 662–672. https://doi.org/10.1177/1087057112436885.
  • Squeglia, F., Ruggiero, A., & Berisio, R. (2018). Chemistry of peptidoglycan in mycobacterium tuberculosis life cycle: An off-the-wall balance of synthesis and degradation. Chemistry (Weinheim an der Bergstrasse, Germany. 24(11), 2533–2546, https://doi.org/10.1002/chem.201702973.
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844+
  • Tai, K., Shen, T., Börjesson, U., Philippopoulos, M., & McCammon, J. A. (2001). Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase. Biophysical Journal, 81(2), 715–724. doi:10.1016/S0006-3495(01)75736-0
  • Tomašić, T., Zidar, N., Kovač, A., Turk, S., SimčIč, M., Blanot, D., Müller-Premru, M., Filipič, M., Grdadolnik, S. G., Zega, A., Anderluh, M., Gobec, S., Kikelj, D., & Peterlin MašIč, L., (2010). 5-Benzylidenethiazolidin-4-ones as multi-target inhibitors of bacterial Mur ligases. ChemMedChem., 5(2), 286–295. https://doi.org/10.1002/cmdc.200900449
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. Jr (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367.
  • Wu, C. H., Apweiler, R., Bairoch, A., Natale, D. A., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Mazumder, R., O'Donovan, C., Redaschi, N., & Suzek, B. (2006). The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Research, 34(Database issue), D187–191. (Database issue), DDhttps://doi.org/10.1093/nar/gkj161.
  • Xu, L., Wu, D., Liu, L., Zheng, Q., Song, Y., Ye, L., Sha, S., Kang, J., Xin, Y., & Ma, Y. (2014). Characterization of mycobacterial UDP-N-acetylglucosamine enolpyruvyle transferase (MurA). Research in Microbiology, 165(2), 91–101. https://doi.org/10.1016/j.resmic.2014.01.004
  • Zapesochnaya, G. G., & Shnyakina, G. P. (1975). Gallomyricitrin — A new acylated flavonoid from Sedum selskianum. Chemistry of Natural Compounds, 11(6), 750–752. https://doi.org/10.1007/BF00568461

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.