379
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical model study of adsorbed antimalarial-graphene dimers: doping effects, photophysical parameters, intermolecular interactions, edge adsorption, and SERS

, , , , ORCID Icon, & show all
Pages 13581-13592 | Received 07 Apr 2021, Accepted 02 Oct 2021, Published online: 19 Oct 2021

References

  • Abdillah, A., Sonawane, P. M., Kim, D., Mametov, D., Shimodaira, S., Park, Y., & Churchill, D. G. (2021). Discussions of fluorescence in selenium chemistry: Recently reported probes, particles, and a clearer biological knowledge. Molecules, 26(3), 692.
  • Ali-Boucetta, H., Bitounis, D., Raveendran-Nair, R., Servant, A., Van den Bossche, J., & Kostarelos, K. (2013). Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Advanced Healthcare Materials, 2(3), 433–441. https://doi.org/10.1002/adhm.201200248
  • Almuqrin, A. H., Al-Otaibi, J. S., Mary, Y. S., & Mary, Y. S. (2021a). DFT computational study towards investigating psychotropic drugs, promazine and trifluoperazine adsorption on graphene, fullerene and carbon cyclic ring nanoclusters. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 246, 119012. https://doi.org/10.1016/j.saa.2020.119012
  • Almuqrin, A. H., Al-Otaibi, S., Mary, Y. S., Mary, Y. S., & Thomas, R. (2021b). Structural study of letrozole and metronidazole and formation of self-assembly with graphene and fullerene with the enhancement of physical, chemical and biological activities. Journal of Biomolecular Structure & Dynamics, 39(15), 5509–5515. https://doi.org/10.1080/07391102.2020.1790420
  • Al-Otaibi, J. S. (2020). Detailed quantum mechanical studies on bioactive benzodiazepine derivatives and their adsorption over graphene sheets. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 235, 118333. https://doi.org/10.1016/j.saa.2020.118333
  • Al-Otaibi, J. S., Almuqrin, A. H., Mary, Y. S., & Mary, Y. S. (2020). Comprehensive quantum mechanical studies on three bioactive anastrozole based triazole analogues and their SERS active graphene complex. Journal of Molecular Structure, 1217, 128388.
  • Arnaldsen, A., Tang, W., & Henkelman, G. (2011). Bader charge analysis. Henkelman.
  • Bekhit, A. A., Ashour, H., Ghany, Y. S., Bekhit, A., & Baraka, A. (2008). Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. European Journal of Medicinal Chemistry, 43(3), 456–463. https://doi.org/10.1016/j.ejmech.2007.03.030
  • Bekhit, A. A., Saudi, M. A., Hassan, M. A., Fahmy, S. M., Ibrahim, T. M., Ghareeb, D., El-Seidy, A., Nasralla, S. A., & Bekhit, E. (2019). Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. European Journal of Medicinal Chemistry, 163, 353–366. https://doi.org/10.1016/j.ejmech.2018.11.067
  • Brown, D. G., & Bostrom, J. (2016). Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone. Journal of Medicinal Chemistry, 59(10), 4443–4458. https://doi.org/10.1021/acs.jmedchem.5b01409
  • Budziak, I., Karcz, D., Makowski, M., Rachwal, K., Starzak, K., Matwijczuk, A., Mysliwa-Kurdziel, B., Oniszczuk, A., Combrzynski, M., Podlesna, A., & Matwijczuk, A. (2019). Non-typical fluorescence effects and biological activity in selected 1,3,4-thiadiazole derivatives: Spectroscopic and theoretical studies on substituent, molecular aggregation and pH effects. International Journal of Molecular Sciences, 20, 5494. https://doi.org/10.3390/ijms20215494
  • Calborean, A., Morari. C., & Maldivi, P. (2017). Combined molecular and periodic DFT analysis of the adsorption of co macrocycles on graphene. Journal of Computational Chemistry, 39, 2.
  • Canamares, M. V., Chenal, C., Birke, R. L., & Lombardi, J. R. (2008). DFT, SERS and single molecule SERS of crystal violet. The Journal of Physical Chemistry C, 112(51), 20295–20300. https://doi.org/10.1021/jp807807j
  • Cao, C., Luo, Y., & Xia, M. (2021). Preparation and characterization of imidazolyl ionic liquid-based shear thickening dispersion system. Journal of Applied Polymer Science, 138(4), 49719. https://doi.org/10.1002/app.49719
  • Çevik, U. A., Osmaniye, D., Levent, S., Sağlik, B. N., Çavuşoğlu, B. K., Özkay, Y., & Kaplancikl, Z. A. (2020). Synthesis and characterization of a new series of thiadiazole derivatives as potential anticancer agents. Heterocyclic Communications, 26(1), 6–13. https://doi.org/10.1515/hc-2020-0002
  • Chhiakara, B., Rathi, B., & Parang, K., (2019) Critical evaluation of pharmaceutical rational design of nano-delivery systems for doxorubicin in cancer therapy. Journal of Materials NanoScience, 6, 47–66. https://doi.org/10.1016/j.ejmech.2008.12.005
  • Cuevas, F., Bartolomei, M., & García-Revilla, M. A. (2017). Noncovalent interactions between cisplatin and graphene prototypes. Journal of Computational Chemistry, 39, 2.
  • Demirbas, A., Sahin, D., Demirbas, N., & Karaoglu, S. A. (2009). Synthesis of some new 1,3,4-thiadiazol-2-ylmethyl-1,2,4-triazole derivatives and investigation of their antimicrobial activities. European Journal of Medicinal Chemistry, 44(7), 2896–2903.
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView. Semichem Inc.
  • Duan, J., Chen, S., Jaroniec, M., & Qiao, S. (2015). Heteroatom-doped graphene based materials for energy relevant electrocatalytic processes. ACS Catalysis, 5(9), 5207–5234. https://doi.org/10.1021/acscatal.5b00991
  • Emanet, M., Şen, Ö., Çobandede, Z., & Çulha, M. (2015). Interaction of carbohydrate modified boron nitride nanotubes with living cells. Colloids and Surfaces B, Biointerfaces, 134, 440–446. https://doi.org/10.1016/j.colsurfb.2015.07.036
  • Eseola, A., Li, W., Sun, W., Zhang, M., Xiao, L., & Woods, J. O. (2011). Luminescent properties of some imidazole and oxazole based heterocycyles: Syntheses, structures, substituent and solvent effects. Dyes and Pigments, 88(3), 262–273. https://doi.org/10.1016/j.dyepig.2010.07.005
  • Feng, J., Dong, H., Yu, L., & Dong, L. (2017). The optical and electronic properties of graphene quantum dots with oxygen containing groups: A density functional theory study. Journal of Materials Chemistry C, 5(24), 5984–5993.
  • Flores-Solis, D., Toledano, Y., Rodriguez-Lima, O., Cano-Sanchez, P., Ramirez-Cordero, B., Landa, A., & Rio-Portilla, F. (2016). Solution structure and antiparasitic activity of scorpine-like peptides from Hoffmannihadrurus gertschi. FEBS Letters, 590, 2286–2296.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A., F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2013). Gaussian 09, revision D.01. Gaussian, Inc.
  • Ghahghaey, Z., Hekmati, M., & Ganji, M. D. (2021). Theoretical investigation of phenol adsorption on functionalized graphene using DFT calculations for effective removal of organic contaminants from wastewater. Journal of Molecular Liquids, 324, 114777. https://doi.org/10.1016/j.molliq.2020.114777
  • Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/jcc.20495
  • Gür, M., Yerlikaya, S., Şener, N., Özkınalı, S., Baloglu, M. C., Gökçe, H., Altunoglu, Y. C., Demir, S., & Şener, İ. (2020). Antiproliferative-antimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds. Journal of Molecular Structure, 1219, 128570. https://doi.org/10.1016/j.molstruc.2020.128570
  • Kamal, M., Raissi, H., Hashemzadeh, H., & Mohammadifard, K. (2020). Theoretical elucidation of the amino acid interaction with graphene and functionalized graphene nanosheets: Insights from DFT calculation and MD simulation. Amino Acids, 52(10), 1465–1478. https://doi.org/10.1007/s00726-020-02905-5
  • Kaur, M., Mary, Y. S., Varghese, H. T., Yohannan Panicker, C., Yathirajan, H. S., Siddegowda, M. S., & Van Alsenoy, C. (2012). Vibrational spectroscopic, molecular structure, first hyperpolarizability and NBO studies of 4'-methylbiphenyl-2-carbonitrile. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 98, 91–99. https://doi.org/10.1016/j.saa.2012.08.061
  • Kemp, K. C., Seema, H., Saleh, M., Le, N. H., Mahesh, K., Chandra, V., & Kim, K. S. (2013). Environmental applications using graphene composites: Water remediation and gas adsorption. Nanoscale, 5(8), 3149–3171. https://doi.org/10.1039/c3nr33708a
  • Ketano, N., Boer, T., Karakaya, M., Zhu, J., Podila, R., Rao, A. M., Kumaev, E. Z., & Moewes, A. (2021). Tuning the electronic structure of graphene though nitrogen doping: Experiment and theory. RSC Advances, 6, 56721–56727.
  • Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, Condensed Matter, 47(1), 558–R561. https://doi.org/10.1103/physrevb.47.558
  • Kresse, K., & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review B, Condensed Matter, 49(20), 14251–14269. https://doi.org/10.1103/physrevb.49.14251
  • Kumar, C., Panicker, C. Y., Fun, H. K., Mary, Y. S., Harikumar, B., Chandraju, S., & Quah, C. K. (2014). FT-IR, molecular structure, first order hyperpolarizability, HOMO and LUMO analysis, MEP and NBO analysis of 2-(4-chlorophenyl)-2-oxoethyl 3-nitrobenzoate. Spectrochimica Acta, 126, 208–219.
  • Kumar, M. N. R. (2000). Nano and microparticles as controlled drug delivery devices. Journal of Pharmacy and Pharmaceutical Sciences, 3, 234–258.
  • Kumar, V. S., Mary, Y. S., Pradhan, K., Brahman, D., Mary, Y. S., Thomas, R., Roxy, M. S., & Alsenoy, C. V. (2020). Synthesis, spectral properties, chemical descriptors and light harvesting studies of a new bioactive azo imidazole compound. Journal of Molecular Structure, 1199, 127035. https://doi.org/10.1016/j.molstruc.2019.127035
  • Lee, W., Mulay, S. V., Shimodaira, S., Abdillah, A., Palma, J., Kim, Y., Yudhistira, T., & Churchill, D. G. (2020). Didactic approach recounting advances and limitations in novel glutathione and cysteine detection (reduced GSH probe) with mixed coumarin, aldehyde, and phenyl-selenium chemistry. Methods in Enzymology, 640, 267–289.
  • Leenaerts, O., Partoens, B., & Peeters, F. M. (2008). Graphene: A perfect nanoballoon. Applied Physics Letters, 93, 193107. https://doi.org/10.1063/1.3021413
  • Li, Z.-Z., Tangadanchu, V. K. R., Battini, N., Bheemanaboina, R. R. Y., Zang, Z.-L., Zhang, S.-L., & Zhou, C.-H. (2019). Indole-nitroimidazole conjugates as efficient manipulators to decrease the genes expression of methicillin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 179, 723–735. https://doi.org/10.1016/j.ejmech.2019.06.093
  • Ling, X., Moura, L. G., Pimenta, M. A., & Zhang, J. (2012). Charge transfer mechanism in graphene-enhanced Raman scattering. The Journal of Physical Chemistry C, 116(47), 25112–25118. https://doi.org/10.1021/jp3088447
  • Ling, X., Wu, J., Xie, L., & Zhang, J. (2013). Graphene-thickness-dependent graphene-enhanced Raman scattering. The Journal of Physical Chemistry C, 117(5), 2369–2376. https://doi.org/10.1021/jp310564d
  • Liu, K., & Zhu, H. (2011). Nitroimidazoles as anti-tumor agents. Anti-Cancer Agents in Medicinal Chemistry, 11(7), 687–691. https://doi.org/10.2174/187152011796817664
  • Liu, Y., Yu, L., Ong, C. N., & Xie, J. (2016). Nitrogen doped graphene nanosheets as reactive water purification membranes. Nano Research, 9(7), 1983–1993. https://doi.org/10.1007/s12274-016-1089-7
  • Liu, Z., Wang, Y., & Zhang, N. (2012). Micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform for drug delivery. Expert Opinion on Drug Discovery, 9, 805–822.
  • Lu, Z., Li, S., Liu, C., He, C., Yang, X., Ma, D., Xu, G., & Yang, Z. (2017). Sulfur doped graphene as a promising metal-free electrocatalyst for oxygen reduction reaction: A DFT-D study. RSC Advances, 7(33), 20398–20405. https://doi.org/10.1039/C7RA00632B
  • Ma, R., Ma, Y., Dong, Y., & Lee, J. M. (2016). Recent advances in heteroatom-doped graphene materials as efficient electrocatalysts towards the oxygen reduction reaction. Nano Advances, 1, 50–61. https://doi.org/10.22180/na172
  • Mary, Y. S., Kumar, V. S., Mary, Y. S., K. S, R., & Thomas, R. (2020). Detailed quantum mechanical studies on three bioactive benzimidazole derivatives and their Raman enhancement on adsorption over graphene sheets. Polycyclic Aromatic Compounds, 1–10. https://doi.org/10.1080/10406638.2020.1852267
  • Mary, Y. S., Mary, Y. S., Resmi, K. S., Kumar, V. S., Thomas, R., & Sureshkumar, B. (2019). Detailed quantum mechanical, molecular docking, QSAR prediction, photovoltaic light harvesting efficiency analysis of benzil and its halogenated analogues. Heliyon, 5(11), e2825. https://doi.org/10.1016/j.heliyon.2019.e02825
  • Mary, Y. S., Miniyar, P. B., Mary, Y. S., Resmi, Z. S., Panicker, C. Y., Armakovic, S., Armakovic, S. J., Thomas, R., & Sureshkumar, B. (2018). Synthesis and spectroscopic study of three new oxadiazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. Journal of Molecular Structure, 1173, 469–480. https://doi.org/10.1016/j.molstruc.2018.07.026
  • Mary, Y. S., Panicker, C. Y., Varghese, H. T., Raju, K., Bolelli, T. E., Yildiz, I., Granadeiro, C. M., & Nogueira, H. I. S. (2011). Vibrational spectroscopic studies and computational study of 4-fluoro-N-(2-hydroxy-4-nitrophenyl)phenylacetamide. Journal of Molecular Structure, 994, 223–231. https://doi.org/10.1016/j.molstruc.2011.03.022
  • Mary, Y. S., Varghese, H. T., Panicker, C. Y., Girisha, M., Sagar, B. K., Yathirajan, H. S., Al-Saadi, A. A., & Van Alsenoy, C. (2015). Vibrational spectra, HOMO, LUMO, NBO, MEP analysis and molecular docking study of 2,2-diphenyl-4-(piperidin-1-yl)butanamide. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 150, 543–556. https://doi.org/10.1016/j.saa.2015.05.090
  • Matwijczuk, A., Kluczyk, D., Górecki, A., Niewiadomy, A., & Gagoś, M. (2017). Spectroscopic studies of fluorescence effects in bioactive 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol and 4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol molecules induced by pH changes in aqueous solutions. Journal of Fluorescence, 27(4), 1201–1212. https://doi.org/10.1007/s10895-017-2053-y
  • Nasehnia, F., & Seifi, M. (2011). Optical conductivity of partially oxidized graphene from first principles. Journal of Applied Physics, 118(1–3), 223.
  • Nepali, K., Lee, H., & Liou, J. (2019). Nitro-group-containing drugs. Journal of Medicinal Chemistry, 62(6), 2851–2893. https://doi.org/10.1021/acs.jmedchem.8b00147
  • Pund, A. A., Saboo, S. S., Sonawane, G. M., Dukale, A. C., & Magare, B. K. (2020). Synthesis of 2,5-disubstituted-1,3,4-thiadiazole derivatives from (2S)-3-(benzyloxy)-2-[(tert-butoxycarbonyl)amino] propanoic acid and evaluation of anti-microbial activity. Synthetic Communications, 50(24), 3854–3864. https://doi.org/10.1080/00397911.2020.1817488
  • Rad, A. S. (2015) First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Applied Surface Science, 357, 1217–1224. https://doi.org/10.1039/C7TC00631D
  • Rodríguez, A. M., González, V. J., León, V., Herrero, M. A., Muñoz-García, A. B., Pavone, M., Prieto, P., De La Hoz, A., & Vázquez, E. (2020). Molecular adsorption of iminotriazine derivatives on graphene. Journal of Physics: Materials, 3(3), 034011. https://doi.org/10.1088/2515-7639/ab953d
  • Santiago, N., Alcantara, G., Costa, J., Carvalho, S. A., Barbosa, J., Salomao, K., Castro, S., Pereira, H., & Silva, E. (2020). Synthesis and antitrypanosomal profile of novel hydrazonoyl derivatives. Medicinal Chemistry, 16, 487–494. https://doi.org/10.2174/1573406415666190712115237
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. (2005). Patchdock and Symmdock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–W367. https://doi.org/10.1093/nar/gki481
  • Serban, G. (2020). Synthetic compounds with 2-amino1,3,4-thiadiazole moiety against viral infections. Molecules, 25, 942.
  • Serban, G., Stanasel, O., Serban, E., & Bota, S. (2018). 2-amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Design, Development and Therapy, 12, 1545–1566. https://doi.org/10.2147/DDDT.S155958
  • Shanmugam, S., Nachimuthu, S., & Subramaniam, S. (2020). DFT study of adsorption of ions on doped and defective graphene. Materials Today Communications, 22, 100714. https://doi.org/10.1016/j.mtcomm.2019.100714
  • Shi, G., Ding, Y., & Fang, F. (2012). Unexpectedly strong anion-π interactions on the graphene flakes. Journal of Computational Chemistry, 33, 14.
  • Singh, P., Choudhary, S., Kashyap, A., Verma, H., Kapil, S., Kumar, M., Arora, M., & Silakari, O. (2020). An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades. Medicinal Chemistry (Shariqah (United Arab Emirates)), 4, 487.
  • Starzak, K., Matwijczuk, A., Creaven, B., Matwijczuk, A., Wybraniec, S., & Karcz, D. (2019). Fluorescence quenching-based mechanism for determination of hypochlorite by coumarin-derived sensors. International Journal of Molecular Sciences, 20, 281.
  • Sutrova, V., Sloufova, I., Mojzes, P., Melnikova, Z., Kalbac, M., & Vickova, B. (2018). Excitation wavelength dependence of combined surface- and graphene enhanced Raman scattering experienced by free-base phthalocyanine localized on single layer graphene covered Ag nanoparticle arrays. Journal of Physical Chemistry C, 122, 20850–20860.
  • Tang, J., Liu, J., & Wu, F. (2016). Molecular docking studies and biological evaluation of 1,3,4-thiadiazole derivatives bearing Schiff base moieties as tyrosinase inhibitors. Bioorganic Chemistry, 69, 29–36. https://doi.org/10.1016/j.bioorg.2016.09.007
  • Tran, T. V., Nguyen, D., Le, H., Vo, D., Nanda, S., & Nguyen, T. D. (2020). Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. Journal of Environmental Sciences (China), 93, 137–150. https://doi.org/10.1016/j.jes.2020.02.007
  • Vales, V., Drogowska-Horna, K., Guerra, V. L. P., & Kalbac, M. (2020). Graphene enhanced Raman scattering on single layer and bilayers of pristine and hydrogenated graphene. Scientific Reports, 10, 4516.
  • Vashist, S. K., Zheng, D., Pastorin, G., Al-Rubeaan, K., Luong, J., & Sheu, F. S. (2011). Delivery of drugs and biomolecules using carbon nanotubes. Carbon, 49, 4077–4097.
  • Wuest, J. D., & Rochefort, A. (2010). Strong adsorption of aminotriazines on graphene. Chemical Communications (Cambridge, England), 46(17), 2923–2925. https://doi.org/10.1039/b926286e
  • Yavari, I., Taheri, Z., Sheikhi, S., Bahemmat, S., & Halvagar, M. R. (2020). A synthesis of N-(1H-pyrazol-5-yl)-1,3,4-thiadiazol-2(3H)-imines from nitrile imines and Erlenmeyer thioazlactones. Molecular Diversity, 24(3), 727–735. https://doi.org/10.1007/s11030-019-09981-0
  • Yudhistira, T., Lee, W. H., & Churchill, D. G. (2020). Biosensor and chemosensor fluorophores that contain chalcogenide centers. Makara Journal of Science, 24(2), 119–134.
  • Zhang, J., Yang, Z., Wang, X., Ren, T., & Qiao, O. (2016). Homogeneous sulphur-doped composites: Porous carbon materials with unique hierarchical porous nanostructure for super-capacitor application. RSC Advances, 6(88), 84847–84853. https://doi.org/10.1039/C6RA17231H
  • Zhang, Y., & Wang, W. T. (2019). Tetrel bonding on graphene. Chemistry, 1147, 8–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.