399
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Exploring potential inhibitors against Kyasanur forest disease by utilizing molecular dynamics simulations and ensemble docking

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 13547-13563 | Received 17 Jul 2021, Accepted 01 Oct 2021, Published online: 18 Oct 2021

References

  • Ackermann, M., & Padmanabhan, R. (2001). De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. The Journal of Biological Chemistry, 276(43), 39926–39937. https://doi.org/10.1074/jbc.M104248200
  • Andersen, H. C. (1983). Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52(1), 24–34. https://doi.org/10.1016/0021-9991(83)90014-1 https://doi.org/10.1016/0021-9991(83)90014-1
  • Aouidate, A., Ghaleb, A., Chtita, S., Aarjane, M., Ousaa, A., Maghat, H., Sbai, A., Choukrad, M., Bouachrine, M., & Lakhlifi, T. (2021). Identification of a novel dual-target scaffold for 3CLpro and RdRp proteins of SARS-CoV-2 using 3D-similarity search, molecular docking, molecular dynamics and ADMET evaluation. Journal of Biomolecular Structure & Dynamics, 39(12), 4522–4514. https://doi.org/10.1080/07391102.2020.1779130
  • Arias, C. F., Preugschat, F., & Strauss, J. H. (1993). Dengue 2 virus ns2b and ns3 form a stable complex that can cleave ns3 within the helicase domain. Virology, 193(2), 888–899. https://doi.org/10.1006/viro.1993.1198
  • Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: Identifying and developing new uses for existing drugs. In Peter Kirkpatrick, Sarah Crunkhorn, Megan Cully, M. Teresa Villanueva, and Katie Kingwell (Eds.), Nature reviews drug discovery (Vol. 3, Issue 8, pp. 673–683). Nature Publishing Group. https://doi.org/10.1038/nrd1468
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(suppl_2), W510–W514. https://doi.org/10.1093/nar/gkp322
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Blazevic, J., Rouha, H., Bradt, V., Heinz, F. X., & Stiasny, K. (2016). Membrane anchors of the structural flavivirus proteins and their role in virus assembly. Journal of Virology, 90(14), 6365–6378. https://doi.org/10.1128/JVI.00447-16
  • Cardoso, J. M. S., Fonseca, L., Egas, C., & Abrantes, I. (2018). Cysteine proteases secreted by the pinewood nematode, Bursaphelenchus xylophilus: In silico analysis. Computational Biology and Chemistry, 77, 291–296. https://doi.org/10.1016/j.compbiolchem.2018.10.011
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheathman, T. E., Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Lin, C., Luchko, T., … Kollman, P. A. (2016). Amber 2016. University of California.
  • Chambers, T. J., Nestorowicz, A., Amberg, S. M., & Rice, C. M. (1993). Mutagenesis of the yellow fever virus NS2B protein: Effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. Journal of Virology, 67(11), 6797–6807. https://doi.org/10.1128/jvi.67.11.6797-6807.1993
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Chen, Y. C. (2015). Beware of docking! Trends in Pharmacological Sciences, 36(2), 78–95. https://doi.org/10.1016/j.tips.2014.12.001
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dodd, K. A., Bird, B. H., Khristova, M. L., Albariño, C. G., Carroll, S. A., Comer, J. A., Erickson, B. R., Rollin, P. E., & Nichol, S. T. (2011). Ancient ancestry of KFDV and AHFV revealed by complete genome analyses of viruses isolated from ticks and mammalian hosts. PLoS Neglected Tropical Diseases, 5(10), e1352. https://doi.org/10.1371/journal.pntd.0001352
  • Dong, H., Chang, D. C., Hua, M. H. C., Lim, S. P., Chionh, Y. H., Hia, F., Lee, Y. H., Kukkaro, P., Lok, S. M., Dedon, P. C., & Shi, P. Y. (2012). 2′-O methylation of internal adenosine by flavivirus NS5 methyltransferase. PLoS Pathogens, 8(4), e1002642. https://doi.org/10.1371/journal.ppat.1002642
  • Egloff, M. P., Benarroch, D., Selisko, B., Romette, J. L., & Canard, B. (2002). An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. The EMBO Journal, 21(11), 2757–2768. https://doi.org/10.1093/emboj/21.11.2757
  • Eldridge, B. F., Scott, T. W., Day, J. F., & Tabachnick, W. J. (2004). Arbovirus diseases. In Bruce F. Eldridge and John D. Edman (Eds.), Medical entomology (pp. 415–460). Springer. https://doi.org/10.1007/978-94-007-1009-2_11
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. Journal of Molecular Biology, 330(4), 891–913. https://doi.org/10.1016/S0022-2836(03)00610-7 https://doi.org/10.1016/S0022-2836(03)00610-7
  • Grant, D., Tan, G. K., Qing, M., Ng, J. K. W., Yip, A., Zou, G., Xie, X., Yuan, Z., Schreiber, M. J., Schul, W., Shi, P.-Y., & Alonso, S. (2011). A single amino acid in nonstructural protein NS4B confers virulence to dengue virus in AG129 mice through enhancement of viral RNA synthesis. Journal of Virology, 85(15), 7775–7787. https://doi.org/10.1128/JVI.00665-11
  • Guyatt, K. J., Westaway, E. G., & Khromykh, A. A. (2001). Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the Flavivirus Kunjin. Journal of Virological Methods, 92(1), 37–44. https://doi.org/10.1016/S0166-0934(00)00270-6 https://doi.org/10.1016/S0166-0934(00)00270-6
  • Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 102(12), 4501–4524. https://doi.org/10.1021/cr000033x
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Irwin, J. J., Duan, D., Torosyan, H., Doak, A. K., Ziebart, K. T., Sterling, T., Tumanian, G., & Shoichet, B. K. (2015). An aggregation advisor for ligand discovery. Journal of Medicinal Chemistry, 58(17), 7076–7087. https://doi.org/10.1021/acs.jmedchem.5b01105
  • Issur, M., Geiss, B. J., Bougie, I., Picard-Jean, F., Despins, S., Mayette, J., Hobdey, S. E., & Bisaillon, M. (2009). The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA (New York, N.Y.), 15(12), 2340–2350. https://doi.org/10.1261/rna.1609709
  • Jacobs, A., Rizzo, R. C., Telehany, S. M., Humby, M. S., Dwight McGee, T., & Riley, S. P. (2020). Identification of zika virus inhibitors using homology modeling and similarity-based screening to target glycoprotein. Biochemistry, 59(39), 3709–3724. https://doi.org/10.1021/acs.biochem.0c00458
  • Jarada, T. N., Rokne, J. G., & Alhajj, R. (2020). A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. Journal of Cheminformatics, 12(1), 1–23. https://doi.org/10.1186/s13321-020-00450-7
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kandagalla, S., Rimac, H., Potemkin, V. A., & Grishina, M. A. (2021). Complementarity principle in terms of electron density for the study of EGFR complexes. Future Medicinal Chemistry, 13(10), 863–875. https://doi.org/10.4155/fmc-2020-0265
  • Kandagalla, S., Shekarappa, S. B., Rimac, H., Grishina, M. A., Potemkin, V. A., & Hanumanthappa, M. (2020). Computational insights into the binding mode of curcumin analogues against EP300 HAT domain as potent acetyltransferase inhibitors. Journal of Molecular Graphics & Modelling, 101, 107756. https://doi.org/10.1016/j.jmgm.2020.107756
  • Kang, C. B., Keller, T. H., & Luo, D. (2017). Zika virus protease: An antiviral drug target. Trends in Microbiology, 25(10), 797–808. https://doi.org/10.1016/j.tim.2017.07.001
  • Kasabi, G. S., Murhekar, M. V., Sandhya, V. K., Raghunandan, R., Kiran, S. K., Channabasappa, G. H., & Mehendale, S. M. (2013). Coverage and effectiveness of Kyasanur forest disease (KFD) vaccine in Karnataka, South India, 2005-10. PLoS Neglected Tropical Diseases, 7(1), e2025. https://doi.org/10.1371/journal.pntd.0002025
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Koonin, E. V. (1993). Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and λ2 protein of reovirus. Journal of General Virology, 74(4), 733–740. https://doi.org/10.1099/0022-1317-74-4-733
  • Kümmerer, B. M., & Rice, C. M. (2002). Mutations in the Yellow Fever virus nonstructural protein NS2A selectively block production of infectious particles. Journal of Virology, 76(10), 4773–4784. https://doi.org/10.1128/jvi.76.10.4773-4784.2002
  • Kyasanur Forest Disease (KFD) | CDC. (n.d.). Retrieved July 16, 2021, from https://www.cdc.gov/vhf/kyasanur/
  • Leung, J. Y., Pijlman, G. P., Kondratieva, N., Hyde, J., Mackenzie, J. M., & Khromykh, A. A. (2008). Role of nonstructural protein NS2A in flavivirus assembly. Journal of Virology, 82(10), 4731–4741. https://doi.org/10.1128/JVI.00002-08
  • Li, H., Clum, S., You, S., Ebner, K. E., & Padmanabhan, R. (1999). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. Journal of Virology, 73(4), 3108–3116. https://doi.org/10.1128/jvi.73.4.3108-3116.1999
  • Li, Z., Zhang, J., & Li, H. (2017). Flavivirus NS2B/NS3 protease: Structure, function, and inhibition. In Satya P. Gupta (Ed.), Viral proteases and their inhibitors (pp. 163–188). Elsevier. https://doi.org/10.1016/B978-0-12-809712-0.00007-1
  • Lindenbach, B. D., & Rice, C. M. (1997). Trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication. Journal of Virology, 71(12), 9608–9617. https://doi.org/10.1128/jvi.71.12.9608-9617.1997
  • Lindenbach, B. D., & Rice, C. M. (1999). Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. Journal of Virology, 73(6), 4611–4621. https://doi.org/10.1128/jvi.73.6.4611-4621.1999
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Miller, S., Kastner, S., Krijnse-Locker, J., Bühler, S., & Bartenschlager, R. (2007). The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. The Journal of Biological Chemistry, 282(12), 8873–8882. https://doi.org/10.1074/jbc.M609919200
  • Miteva, M. A., Violas, S., Montes, M., Gomez, D., Tuffery, P., & Villoutreix, B. O. (2006). FAF-drugs: Free ADME/tox filtering of compound collections. Nucleic Acids Research, 34(Web Server), W738–W744. https://doi.org/10.1093/nar/gkl065
  • Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins, 12(4), 345–364. https://doi.org/10.1002/prot.340120407
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mourya, D. T., Yadav, P. D., Sandhya, V. K., & Reddy, S. (2013). Spread of Kyasanur Forest disease, Bandipur Tiger Reserve, India, 2012-2013. Emerging Infectious Diseases, 19(9), 1540–1541. https://doi.org/10.3201/eid1909.121884
  • Munivenkatappa, A., Sahay, R. R., Yadav, P. D., Viswanathan, R., & Mourya, D. T. (2018). Clinical & epidemiological significance of Kyasanur forest disease. Indian Journal of Medical Research, 148(2), 145–150. https://doi.org/10.4103/ijmr.IJMR_688_17
  • Muñoz-Jordán, J. L., Laurent-Rolle, M., Ashour, J., Martínez-Sobrido, L., Ashok, M., Lipkin, W. I., & García-Sastre, A. (2005). Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. Journal of Virology, 79(13), 8004–8013. https://doi.org/10.1128/jvi.79.13.8004-8013.2005
  • Murhekar, M. V., Kasabi, G. S., Mehendale, S. M., Mourya, D. T., Yadav, P. D., & Tandale, B. V. (2015). On the transmission pattern of Kyasanur Forest disease (KFD) in India. Infectious Diseases of Poverty, 4(1), 37. https://doi.org/10.1186/s40249-015-0066-9
  • Muylaert, I. R., Galler, R., & Rice, C. M. (1997). Genetic analysis of the yellow fever virus NS1 protein: Identification of a temperature-sensitive mutation which blocks RNA accumulation. Journal of Virology, 71(1), 291–298. https://doi.org/10.1128/jvi.71.1.291-298.1997
  • Nitsche, C., Onagi, H., Quek, J. P., Otting, G., Luo, D., & Huber, T. (2019). Biocompatible macrocyclization between cysteine and 2-cyanopyridine generates stable peptide inhibitors. Organic Letters, 21(12), 4709–4712. https://doi.org/10.1021/acs.orglett.9b01545
  • Novak, J., Rimac, H., Kandagalla, S., Grishina, M. A., & Potemkin, V. A. (2021). Can natural products stop the SARS-CoV-2 virus? A docking and molecular dynamics study of a natural product database. Future Medicinal Chemistry, 13(4), 363–378. https://doi.org/10.4155/fmc-2020-0248
  • Patel, B., Singh, V., & Patel, D. (2019). Structural bioinformatics. In Noor Ahmad Shaik, Khalid Rehman Hakeem, Babajan Banaganapalli, Ramu Elango (Eds.), Essentials of bioinformatics (Vol. I, pp. 169–199). Springer International Publishing. https://doi.org/10.1007/978-3-030-02634-9_9
  • Pathak, N., Kuo, Y. P., Chang, T. Y., Huang, C. T., Hung, H. C., Hsu, J. T. A., Yu, G. Y., & Yang, J. M. (2020). Zika virus NS3 protease pharmacophore anchor model and drug discovery. Scientific Reports, 10(1), 1–17. https://doi.org/10.1038/s41598-020-65489-w
  • Pathak, N., Lai, M. L., Chen, W. Y., Hsieh, B. W., Yu, G. Y., & Yang, J. M. (2017). Pharmacophore anchor models of flaviviral NS3 proteases lead to drug repurposing for DENV infection. BMC Bioinformatics, 18(S16), 39–51. https://doi.org/10.1186/s12859-017-1957-5
  • Pattnaik, P. (2006). Kyasanur forest disease: An epidemiological view in India. Reviews in Medical Virology, 16(3), 151–165. https://doi.org/10.1002/rmv.495
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Rastelli, G., Del Rio, A., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry, 31(4), 797–810. https://doi.org/10.1002/jcc.21372
  • Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T. S., Zhou, Y., Li, H., & Shi, P.-Y. (2006). West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. Journal of Virology, 80(17), 8362–8370. https://doi.org/10.1128/JVI.00814-06
  • Rimac, H., Grishina, M., & Potemkin, V. (2021). Use of the complementarity principle in docking procedures: A new approach for evaluating the correctness of binding poses. Journal of Chemical Information and Modeling, 61(4), 1801–1813. https://doi.org/10.1021/acs.jcim.0c01382
  • Rimac, H., Grishina, M. A., & Potemkin, V. A. (2020). Electron density analysis of CDK complexes using the AlteQ method. Future Medicinal Chemistry, 12(15), 1387–1397. https://doi.org/10.4155/fmc-2020-0076
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roosendaal, J., Westaway, E. G., Khromykh, A., & Mackenzie, J. M. (2006). Regulated cleavages at the West Nile Virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and golgi trafficking of the NS4A protein. Journal of Virology, 80(9), 4623–4632. https://doi.org/10.1128/JVI.80.9.4623-4632.2006
  • Santos, F. R. S., Nunes, D. A. F., Lima, W. G., Davyt, D., Santos, L. L., Taranto, A. G., & Ferreira, M. S. J. (2020). Identification of Zika virus NS2B-NS3 protease inhibitors by structure-based virtual screening and drug repurposing approaches. Journal of Chemical Information and Modeling, 60(2), 731–737. https://doi.org/10.1021/acs.jcim.9b00933
  • Shah, S. Z., Jabbar, B., Ahmed, N., Rehman, A., Nasir, H., Nadeem, S., Jabbar, I., Ur Rahman, Z., & Azam, S. (2018). Epidemiology, pathogenesis, and control of a tick-borne disease- Kyasanur forest disease: Current status and future directions. Frontiers in Cellular and Infection Microbiology8, 149. https://doi.org/10.3389/fcimb.2018.00149
  • Shiryaev, S. A., Mesci, P., Pinto, A., Fernandes, I., Sheets, N., Shresta, S., Farhy, C., Huang, C. T., Strongin, A. Y., Muotri, A. R., & Terskikh, A. V. (2017). Repurposing of the anti-malaria drug chloroquine for Zika Virus treatment and prophylaxis. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-15467-6
  • Sreenivasan, M. A., Bhat, H. R., & Rajagopalan, P. K. (1986). The epizootics of kyasanur forest disease in wild monkeys during 1964 to 1973. Transactions of the Royal Society of Tropical Medicine and Hygiene, 80(5), 810–814. https://doi.org/10.1016/0035-9203(86)90390-1
  • Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., Pan, P., Zhu, F., Zhang, J. Z. H., & Hou, T. (2018). Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Physical Chemistry Chemical Physics: PCCP, 20(21), 14450–14460. https://doi.org/10.1039/c7cp07623a
  • Tomar, S., Mudgal, R., & Fatma, B. (2017). Flavivirus protease: An antiviral target. In Satya P. Gupta (Ed.), Viral proteases and their inhibitors (pp. 137–161). Elsevier. https://doi.org/10.1016/B978-0-12-809712-0.00006-X
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Umamaheswari, A., Pradhan, D., & Hemanthkumar, M. (2010). Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase. Journal of Chemical Biology, 3(4), 175–187. https://doi.org/10.1007/s12154-010-0040-8
  • Umareddy, I., Chao, A., Sampath, A., Gu, F., & Vasudevan, S. G. (2006). Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. The Journal of General Virology, 87(Pt 9), 2605–2614. https://doi.org/10.1099/vir.0.81844-0
  • Upadhyaya, S., Murthy, D. P. N., & Anderson, C. R. (1975). Kyasanur Forest disease in the human population of Shimoga District, Mysore State, 1959-1966. Indian Journal of Medical Research, 63(11), 1556–1563. http://europepmc.org/article/med/1222964
  • Upadhyaya, S., Murthy, D. P. N., & Murthy, B. K. Y. (1975). Viraemia studies on the Kyasanur Forest disease human cases of 1966. Indian Journal of Medical Research, 63(7), 950–953.
  • van Santen, J. A., Jacob, G., Singh, A. L., Aniebok, V., Balunas, M. J., Bunsko, D., Neto, F. C., Castaño-Espriu, L., Chang, C., Clark, T. N., Cleary Little, J. L., Delgadillo, D. A., Dorrestein, P. C., Duncan, K. R., Egan, J. M., Galey, M. M., Haeckl, F. P. J., Hua, A., Hughes, A. H., … Linington, R. G. (2019). The natural products atlas: An open access knowledge base for microbial natural products discovery. ACS Central Science, 5(11), 1824–1833. https://doi.org/10.1021/acscentsci.9b00806
  • Vitkup, D., Melamud, E., Moult, J., & Sander, C. (2001). Completeness in structural genomics. Nature Structural Biology, 8(6), 559–565. https://doi.org/10.1038/88640
  • Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. Journal of Chemical Information and Modeling, 52(2), 360–372. https://doi.org/10.1021/ci200454v
  • Vyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17. https://doi.org/10.4103/0250-474X.102537
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, L., Ma, C., Wipf, P., Liu, H., Su, W., & Xie, X. Q. (2013). Targethunter: An in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database. The AAPS Journal, 15(2), 395–406. https://doi.org/10.1208/s12248-012-9449-z
  • Warrener, P., Tamura, J. K., & Collett, M. S. (1993). RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. Journal of Virology, 67(2), 989–996. https://doi.org/10.1128/jvi.67.2.989-996.1993
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wengler, G., & Wengler, G. (1991). The carboxy-terminal part of the NS 3 protein of the West Nile Flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology, 184(2), 707–715. https://doi.org/10.1016/0042-6822(91)90440-M
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Work, T. H., Roderiguez, F. R., & Bhatt, P. N. (1959). Virological epidemiology of the 1958 epidemic of Kyasanur Forest disease. American Journal of Public Health and the Nation's Health, 49(7), 869–874. https://doi.org/10.2105/ajph.49.7.869
  • Work, T. H., Trapido, H., Murthy, D. P., Rao, R. L., Bhatt, P. N., & Kulkarni, K. G. (1957). Kyasanur forest disease. III. A preliminary report on the nature of the infection and clinical manifestations in human beings. Indian Journal of Medical Sciences, 11(8), 619–645. https://europepmc.org/article/med/13474777
  • Ya’u Ibrahim, Z., Uzairu, A., Shallangwa, G., & Abechi, S. (2020). Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Scientific African, 10, e00570. https://doi.org/10.1016/j.sciaf.2020.e00570
  • Yadav, P. D., Patil, S., Jadhav, S. M., Nyayanit, D. A., Kumar, V., Jain, S., Sampath, J., Mourya, D. T., & Cherian, S. S. (2020). Phylogeography of Kyasanur Forest Disease virus in India (1957–2017) reveals evolution and spread in the Western Ghats region. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-58242-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.