275
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In vitro and in silico screening of Klebsiella pneumoniae new Delhi metallo-β-lactamase-1 inhibitors from endophytic Streptomyces spp.

, , , , &
Pages 13593-13605 | Received 18 Mar 2021, Accepted 02 Oct 2021, Published online: 16 Oct 2021

References

  • Ali, A., Gupta, D., Srivastava, G., Sharma, A., & Khan, A. U. (2019). Molecular and computational approaches to understand resistance of New Delhi metallo β-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems. Journal of Biomolecular Structure & Dynamics, 37(8), 2061–2071. https://doi.org/10.1080/07391102.2018.1475261.
  • Busarakam, K., Labeda, D., and Wezel, G. P. & Van, (2014). Chaxamycins, forms a distinct branch in Streptomyces gene trees Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. https://doi.org/10.1007/s10482-014-0139-y.
  • CDC (2013). Antibiotic resistance threats in the United States, 2013.
  • Cheepurupalli, L., Raman, T., Rathore, S. S., & Ramakrishnan, J. (2017). Bioactive molecule from Streptomyces sp mitigates MDR Klebsiella pneumoniae in Zebrafish infection model. Frontiers in Microbiology, 8, 614–615. https://doi.org/10.3389/FMICB.2017.00614.
  • Chen, A. Y., Thomas, P. W., Stewart, A. C., Bergstrom, A., Cheng, Z., Miller, C., Bethel, C. R., Marshall, S. H., Credille, C. V., Riley, C. L., Page, R. C., Bonomo, R. A., Crowder, M. W., Tierney, D. L., Fast, W., & Cohen, S. M. (2017). Dipicolinic acid derivatives as inhibitors of New Delhi metallo-β-lactamase-1. Journal of Medicinal Chemistry, 60(17), 7267–7283. https://doi.org/10.1021/acs.jmedchem.7b00407.
  • Drawz, S. M., & Bonomo, R. A. (2010). Three decades of beta-lactamase inhibitors. Clinical Microbiology Reviews, 23(1), 160–201. https://doi.org/10.1128/CMR.00037-09.
  • Drawz, S. M., Papp-Wallace, K. M., & Bonomo, R. A. (2014). New β-lactamase inhibitors: A therapeutic renaissance in an MDR world. Antimicrobial Agents & Chemotherapy, 58(4), 1835–1846. https://doi.org/10.1128/AAC.00826-13.
  • van Duin, D., & Doi, Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence, 8(4), 460–469. https://doi.org/10.1080/21505594.2016.1222343.
  • Fast, W., & Sutton, L. D. (2013). Metallo-β-lactamase: Inhibitors and reporter substrates. Biochimica et Biophysica Acta, 1834(8), 1648–1659. https://doi.org/10.1016/j.bbapap.2013.04.024.
  • Govindan, S., Viswanathan, S., Vijayasekaran, V., & Alagappan, R. (1999). A pilot study on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. Journal of Ethnopharmacology, 66(2), 205–210. https://doi.org/10.1016/s0378-8741(98)00160-3.
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6–7), 591–604. https://doi.org/10.1007/s10822-010-9349-1.
  • Gupte, S., Aggarwal, P., & Kaur, M. (2014). Current concept of New-Delhi metallo beta lactamases (NDM). SMU Medical Journal, 1, 88–101.
  • Gwynn, M. N., Portnoy, A., Rittenhouse, S. F., & Payne, D. J. (2010). Challenges of antibacterial discovery revisited. Annals of the New York Academy of Sciences, 1213, 5–19. https://doi.org/10.1111/j.1749-6632.2010.05828.x.
  • Hecker, S. J., Reddy, K. R., Totrov, M., Hirst, G. C., Lomovskaya, O., Griffith, D. C., King, P., Tsivkovski, R., Sun, D., Sabet, M., Tarazi, Z., Clifton, M. C., Atkins, K., Raymond, A., Potts, K. T., Abendroth, J., Boyer, S. H., Loutit, J. S., Morgan, E. E., Durso, S., & Dudley, M. N. (2015). Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. Journal of Medicinal Chemistry, 58(9), 3682–3692. https://doi.org/10.1021/acs.jmedchem.5b00127.
  • Jewison, T., Knox, C., Neveu, V., Djoumbou, Y., Guo, A. C., Lee, J., Liu, P., Mandal, R., Krishnamurthy, R., Sinelnikov, I., Wilson, M., & Wishart, D. S. (2012). YMDB: The yeast metabolome database. Nucleic Acids Research, 40(Database issue), D815–D820. https://doi.org/10.1093/nar/gkr916.
  • Khan, A. U., Ali, A., Danishuddin, Srivastava, G., & Sharma, A. (2017). Potential inhibitors designed against NDM-1 type metallo-β-lactamases: An attempt to enhance efficacies of antibiotics against multi-drug-resistant bacteria. Scientific Reports, 7, 9207. https://doi.org/10.1038/s41598-017-09588-1.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033.
  • Kim, Y., Cunningham, M. A., Mire, J., Tesar, C., Sacchettini, J., & Joachimiak, A. (2013). NDM-1, the ultimate promiscuous enzyme: Substrate recognition and catalytic mechanism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 27(5), 1917–1927. https://doi.org/10.1096/fj.12-224014
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581.
  • King, A. M., Reid-Yu, S. A., Wang, W., King, D. T., De Pascale, G., Strynadka, N. C., Walsh, T. R., Coombes, B. K., & Wright, G. D. (2014). Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 510(7506), 503–506. https://doi.org/10.1038/nature13445.
  • King, N. M., Prabu-Jeyabalan, M., Bandaranayake, R. M., Nalam, M. N. L., Nalivaika, E. A., Özen, A., Haliloğlu, T., Yilmaz, N. K., & Schiffer, C. A. (2012). Extreme entropy–enthalpy compensation in a drug-resistant variant of HIV-1 protease. ACS Chemical Biology, 7(9), 1536–1546. https://doi.org/10.1021/cb300191k.
  • Lee, Y. R., & Baker, N. T. (2018). Meropenem-vaborbactam: A carbapenem and beta-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 37(8), 1411–1419. https://doi.org/10.1007/s10096-018-3260-4.
  • Matsue, M., Mori, Y., Nagase, S., Sugiyama, Y., Hirano, R., Ogai, K., Ogura, K., Kurihara, S., & Okamoto, S. (2019). Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplantation, 28(12), 1528–1541. https://doi.org/10.1177/0963689719881366.
  • Nakatsuji, T., Kao, M. C., Fang, J.-Y., Zouboulis, C. C., Zhang, L., Gallo, R. L., & Huang, C.-M. (2009). Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. The Journal of Investigative Dermatology, 129(10), 2480–2488. https://doi.org/10.1038/jid.2009.93.
  • Nanjwade, B. K., Chandrashekhara, S., Shamarez, A. M., Goudanavar, P. S., & Manvi, F. V. (2010). Isolation and morphological characterization of antibiotic producing actinomycetes. Tropical Journal of Pharmaceutical Research, 9, 231–236. https://doi.org/10.4314/tjpr.v9i3.56282.
  • Poirel, L., Jayol, A., & Nordmann, P. (2017). Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clinical Microbiology Reviews, 30(2), 557–596. https://doi.org/10.1128/CMR.00064-16.
  • Rahman, M., & Khan, M. K. A. (2020). In silico based unraveling of New Delhi metallo-β-lactamase (NDM-1) inhibitors from natural compounds: A molecular docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 38(7), 2093–2103. https://doi.org/10.1080/07391102.2019.1627248.
  • Ramirez-Gaona, M., Marcu, A., Pon, A., Guo, A. C., Sajed, T., Wishart, N. A., Karu, N., Djoumbou Feunang, Y., Arndt, D., & Wishart, D. S. (2017). YMDB 2.0: A significantly expanded version of the yeast metabolome database. Nucleic Acids Research, 45(D1), D440–D445. https://doi.org/10.1093/nar/gkw1058.
  • Rathore, S. S., Ramamurthy, V., Allen, S., Selva Ganesan, S., & Ramakrishnan, J. (2016). Novel approach of adaptive laboratory evolution: Triggers defense molecules in Streptomyces sp. against targeted pathogen. RSC Advances, 6(98), 96250–96262. https://doi.org/10.1039/C6RA15952D.
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology & Evolution, 4(4), 406–425.
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8.
  • Schrödinger Release (2020-4). Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2020.
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z.
  • Shirling, E. B., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic & Evolutionary Microbiology, 16, 313–340. https://doi.org/10.1099/00207713-16-3-313.
  • Shrestha, B. R., & Shamser, S. (2014). Comparative study of three β lactamase test methods in Staphylococcus aureus isolated from two Nepalese hospitals. Open Journal of Clinical Diagnostics, 4, 47–52.
  • Solecka, J., Zajko, J., Postek, M., & Rajnisz, A. (2012). Biologically active secondary metabolites from Actinomycetes. Open Life Sciences, 7(3), 373–390. https://doi.org/10.2478/s11535-012-0036-1
  • Strobel, G. A. (2003). Endophytes as sources of bioactive products. Microbes & Infection, 5(6), 535–544. https://doi.org/10.1016/S1286-4579(03)00073-X
  • Tooke, C. L., Hinchliffe, P., Krajnc, A., Mulholland, A. J., Brem, J., Schofield, C. J., & Spencer, J. (2020). Cyclic boronates as versatile scaffolds for KPC-2 β-lactamase inhibition. RSC Medicinal Chemistry, 11(4), 491–496. https://doi.org/10.1039/c9md00557a
  • Tsay, R. W., Siu, L. K., Fung, C. P., & Chang, F. Y. (2002). Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: Risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Archives of Internal Medicine, 162(9), 1021–1027. https://doi.org/10.1001/archinte.162.9.1021
  • Zhang, M., & Hao, Q. (2011). Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 25(8), 2574–2582. https://doi.org/10.1096/fj.11-184036
  • Zhang, X., Wang, J., Hong, C., Luo, W., & Wang, C. (2015). Design, synthesis and evaluation of genistein–polyamine conjugates as multi-functional anti-Alzheimer agents. Acta Pharmaceutica Sinica B, 5(1), 67–73. https://doi.org/10.1016/j.apsb.2014.12.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.