420
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: a reverse vaccinology approach

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 13711-13726 | Received 19 Feb 2021, Accepted 10 Oct 2021, Published online: 25 Oct 2021

References

  • Abraham Peele, K., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., & Venkateswarulu, T. C. (2021). Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study. Journal of Biomolecular Structure & Dynamics, 39(10), 3793–3801.
  • Ahmad, S., Navid, A., Farid, R., Abbas, G., Ahmad, F., Zaman, N., Parvaiz, N., & Azam, S. S. (2020). Design of a novel multi epitope-based vaccine for pandemic coronavirus disease (COVID-19) by vaccinomics and probable prevention strategy against avenging zoonotics. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 151, 105387.
  • Akhand, M. R. N., Azim, K. F., Hoque, S. F., Moli, M. A., Joy, B., Das, Akter, H., Afif, I. K., Ahmed, N., & Hasan, M. (2020). Genome based evolutionary study of SARS-CoV-2 towards the prediction of epitope based chimeric vaccine. BioRxiv.
  • Alexander, J., del Guercio, M.-F., Maewal, A., Qiao, L., Fikes, J., Chesnut, R. W., Paulson, J., Bundle, D. R., DeFrees, S., & Sette, A. (2000). Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. Journal of Immunology (Baltimore, MD: 1950), 164(3), 1625–1633. https://doi.org/10.4049/jimmunol.164.3.1625
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bui, H.-H., Sidney, J., Li, W., Fusseder, N., & Sette, A. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics, 8(1), 1–6. https://doi.org/10.1186/1471-2105-8-361
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9(10), e1003266.
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240.
  • Cheng, V. C. C., Lau, S. K. P., Woo, P. C. Y., & Yuen, K. Y. (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical Microbiology Reviews, 20(4), 660–694.
  • Colovos, C., & Yeates, T. (1993). ERRAT: An empirical atom-based method for validating protein structures. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Dai, Y., Chen, H., Zhuang, S., Feng, X., Fang, Y., Tang, H., Dai, R., Tang, L., Liu, J., Ma, T., & Zhong, G. (2020). Immunodominant regions prediction of nucleocapsid protein for SARS-CoV-2 early diagnosis: A bioinformatics and immunoinformatics study. Pathogens and Global Health, 114(8), 463–470.
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England: 1993), 28(9), 1071–1081.
  • Dhanda, S. K., Usmani, S. S., Agrawal, P., Nagpal, G., Gautam, A., & Raghava, G. P. S. (2017). Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Briefings in Bioinformatics, 18(3), 467–478.
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 1–6. https://doi.org/10.1007/s00894-014-2278-5
  • Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Frontiers in Immunology, 11, 1784.
  • Dönnes, P., & Kohlbacher, O. (2005). Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Science: A Publication of the Protein Society, 14(8), 2132–2140.
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Eds.), The proteomics protocols handbook. Springer protocols handbooks (pp. 571–607). Humana Press.
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531.
  • Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1–10. https://doi.org/10.1186/s40779-020-00240-0
  • He, L., & Zhu, J. (2015). Computational tools for epitope vaccine design and evaluation. Current Opinion in Virology, 11, 103–112.
  • Hossain, M. S., Hossan, M. I., Mizan, S., Moin, A. T., Yasmin, F., Akash, A.-S., Powshi, S. N., Hasan, A. K. R., & Chowdhury, A. S. (2021). Immunoinformatics approach to designing a multi-epitope vaccine against Saint Louis Encephalitis Virus. Informatics in Medicine Unlocked, 22, 100500. https://doi.org/10.1016/j.imu.2020.100500
  • Ishizuka, J., Grebe, K., Shenderov, E., Peters, B., Chen, Q., Peng, Y., Wang, L., Dong, T., Pasquetto, V., Oseroff, C., Sidney, J., Hickman, H., Cerundolo, V., Sette, A., Bennink, J. R., McMichael, A., & Yewdell, J. W. (2009). Quantitating T cell cross-reactivity for unrelated peptide antigens. Journal of Immunology (Baltimore, MD: 1950), 183(7), 4337–4345.
  • Islam, M. R., Hoque, M. N., Rahman, M. S., Alam, A. S. M. R. U., Akther, M., Puspo, J. A., Akter, S., Sultana, M., Crandall, K. A., & Hossain, M. A. (2020). Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-70812-6
  • Ismail, S., Ahmad, S., & Azam, S. S. (2020). Immunoinformatics characterization of SARS-CoV-2 spike glycoprotein for prioritization of epitope based multivalent peptide vaccine. Journal of Molecular Liquids, 314, 113612.
  • Jain, S., & Baranwal, M. (2019). Computational analysis in designing T cell epitopes enriched peptides of Ebola glycoprotein exhibiting strong binding interaction with HLA molecules. Journal of Theoretical Biology, 465, 34–44.
  • Jarjour, N. N., Masopust, D., & Jameson, S. C. (2021). T cell memory: Understanding COVID-19. Immunity, 54(1), 14–18. https://doi.org/10.1016/j.immuni.2020.12.009
  • Jaydari, A., Nazifi, N., & Forouharmehr, A. (2020). Computational design of a novel multi-epitope vaccine against Coxiella burnetii. Human Immunology, 81(10–11), 596–605.
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 1–24. https://doi.org/10.1038/s41598-020-67749-1
  • Karlsson, A. C., Humbert, M., & Buggert, M. (2020). The known unknowns of T cell immunity to COVID-19. Science Immunology, 5(53), eabe8063. https://doi.org/10.1126/sciimmunol.abe8063
  • Kim, Y., Ponomarenko, J., Zhu, Z., Tamang, D., Wang, P., Greenbaum, J., Lundegaard, C., Sette, A., Lund, O., Bourne, P. E., Nielsen, M., & Peters, B. (2012). Immune epitope database analysis resource. Nucleic Acids Research, 40(Web Server issue), W525–W530.
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297.
  • Kyriakidis, N. C., López-Cortés, A., González, E. V., Grimaldos, A. B., & Prado, E. O. (2021). SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines, 6(1), 1–17. https://doi.org/10.1038/s41541-021-00292-w
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Long, Q.-X., Liu, B.-Z., Deng, H.-J., Wu, G.-C., Deng, K., Chen, Y.-K., Liao, P., Qiu, J.-F., Lin, Y., Cai, X.-F., Wang, D.-Q., Hu, Y., Ren, J.-H., Tang, N., Xu, Y.-Y., Yu, L.-H., Mo, Z., Gong, F., Zhang, X.-L., … Huang, A.-L. (2020). Antibody responses to SARS-CoV-2 in patients with COVID-19. Nature Medicine, 26(6), 845–848. https://doi.org/10.1038/s41591-020-0897-1
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–W276.
  • Lu, H., Stratton, C. W., & Tang, Y. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of Medical Virology, 92(4), 401–402.
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics (Oxford, England), 25(17), 2200–2207.
  • Majee, P., Jain, N., & Kumar, A. (2020). Designing of a multi-epitope vaccine candidate against Nipah virus by in silico approach: A putative prophylactic solution for the deadly virus. Journal of Biomolecular Structure and Dynamics, 39 (4), 1461–1480.
  • Mehla, K., & Ramana, J. (2016). Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: A comparative genomics and immunoinformatics approach. Molecular bioSystems, 12(3), 890–901. https://doi.org/10.1039/c5mb00745c
  • Mohammed, A. A., ALnaby, A. M., Sabeel, S. M., AbdElmarouf, F. M., Dirar, A. I., Ali, M. M., Khandgawi, M. A., Yousif, A. M., Abdulgadir, E. M., Sabahalkhair, M. A., Abbas, A. E., & Hassan, M. A. (2018). Epitope-based peptide vaccine against fructose-bisphosphate aldolase of Madurella mycetomatis Using immunoinformatics approaches. Bioinformatics and Biology Insights, 12, 1177932218809703.
  • Mohan, M., Haribalaganesh, R., Coico, R., & Sundar, K. (2018). HLA-directed bioinformatics approach for genome-wide mapping of dengue CTL epitopes. Future Virology, 13(5), 331–342. https://doi.org/10.2217/fvl-2017-0157
  • Mohan, M., Shanmugaraja, P., Krishnan, R., Rajagopalan, K., & Sundar, K. (2020). In silico prediction of b-cell epitopes of dengue virus–A reverse vaccinology approach. Journal of Applied Pharmaceutical Science, 10(10), 77–85.
  • Nguyen, T. T., Pathirana, P. N., Nguyen, T., Nguyen, Q. V. H., Bhatti, A., Nguyen, D. C., Nguyen, D. T., Nguyen, N. D., Creighton, D., & Abdelrazek, M. (2021). Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). Scientific Reports, 11(1), 1–16.
  • Ojha, R., Gupta, N., Naik, B., Singh, S., Verma, V. K., Prusty, D., & Prajapati, V. K. (2020). High throughput and comprehensive approach to develop multiepitope vaccine against minacious COVID-19. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 151, 105375.
  • Parvizpour, S., Pourseif, M. M., Razmara, J., Rafi, M. A., & Omidi, Y. (2020). Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discovery Today, 25(6), 1034–1042.
  • Patronov, A., & Doytchinova, I. (2013). T-cell epitope vaccine design by immunoinformatics. Open Biology, 3(1), 120139. https://doi.org/10.1098/rsob.120139
  • Peng, Y., Mentzer, A. J., Liu, G., Yao, X., Yin, Z., Dong, D., Dejnirattisai, W., Rostron, T., Supasa, P., Liu, C., López-Camacho, C., Slon-Campos, J., Zhao, Y., Stuart, D. I., Paesen, G. C., Grimes, J. M., Antson, A. A., Bayfield, O. W., Hawkins, D. E. D. P., … Dong, T. (2020). Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature Immunology, 21(11), 1336–1345.
  • Peters, B., Bulik, S., Tampe, R., Van Endert, P. M., & Holzhütter, H.-G. (2003). Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. Journal of Immunology (Baltimore, MD: 1950), 171(4), 1741–1749.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Poran, A., Harjanto, D., Malloy, M., Arieta, C. M., Rothenberg, D. A., Lenkala, D., van Buuren, M. M., Addona, T. A., Rooney, M. S., Srinivasan, L., & Gaynor, R. B. (2020). Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Genome Medicine, 12(1), 1–15. https://doi.org/10.1186/s13073-020-00767-w
  • Rahman, N., Ali, F., Basharat, Z., Shehroz, M., Khan, M. K., Jeandet, P., Nepovimova, E., Kuca, K., & Khan, H. (2020). Vaccine design from the ensemble of surface glycoprotein epitopes of SARS-CoV-2: An immunoinformatics approach. Vaccines, 8(3), 423. https://doi.org/10.3390/vaccines8030423
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics: TIG, 16(6), 276–277.
  • Roussel, Y., Giraud-Gatineau, A., Jimeno, M.-T., Rolain, J.-M., Zandotti, C., Colson, P., & Raoult, D. (2020). SARS-CoV-2: Fear versus data. International Journal of Antimicrobial Agents, 55(5), 105947.
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.
  • Saha, R., & Prasad, B. V. L. S. (2020). In silico approach for designing of a multi-epitope based vaccine against novel Coronavirus (SARS-COV-2). BioRxiv. https://www.biorxiv.org/content/101101/2020.03.31.017459v1
  • Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98.
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L., & Souopgui, J. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 9(1), 1–18. https://doi.org/10.1038/s41598-019-40833-x
  • Tahir Ul Qamar, M., Rehman, A., Tusleem, K., Ashfaq, U. A., Qasim, M., Zhu, X., Fatima, I., Shahid, F., & Chen, L.-L. (2020). Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PloS One, 15(12), e0244176.
  • Takagi, A., & Matsui, M. (2020). Identification of HLA-A* 02: 01-restricted candidate epitopes derived from the nonstructural polyprotein 1a of SARS-CoV-2 that may be natural targets of CD8+ T cell recognition in vivo. Journal of Virology, 95(5), e01837-20.
  • Tarke, A., Sidney, J., Kidd, C. K., Dan, J. M., Ramirez, S. I., Yu, E. D., Mateus, J., da Silva Antunes, R., Moore, E., Rubiro, P., Methot, N., Phillips, E., Mallal, S., Frazier, A., Rawlings, S. A., Greenbaum, J. A., Peters, B., Smith, D. M., Crotty, S., … Sette, A. (2021). Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Reports Medicine, 2(2), 100204. https://doi.org/10.1016/j.xcrm.2021.100204
  • Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M. M., Kloetzel, P.-M., Rammensee, H.-G., Schild, H., & Holzhütter, H.-G. (2005). Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cellular and Molecular Life Sciences: CMLS, 62(9), 1025–1037.
  • Thevarajan, I., Nguyen, T. H. O., Koutsakos, M., Druce, J., Caly, L., van de Sandt, C. E., Jia, X., Nicholson, S., Catton, M., Cowie, B., Tong, S. Y. C., Lewin, S. R., & Kedzierska, K. (2020). Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nature Medicine, 26(4), 453–455.
  • Tomar, N., & De, R. K. (2010). Immunoinformatics: An integrated scenario. Immunology, 131(2), 153–168. https://doi.org/10.1111/j.1365-2567.2010.03330.x
  • Tosta, S. F. O., Passos, M. S., Kato, R., Salgado, Á., Xavier, J., Jaiswal, A. K., Soares, S. C., Azevedo, V., Giovanetti, M., & Tiwari, S. (2021). Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 39(1), 219–235. https://doi.org/10.1080/07391102.2019.1707120
  • Trolle, T., McMurtrey, C. P., Sidney, J., Bardet, W., Osborn, S. C., Kaever, T., Sette, A., Hildebrand, W. H., Nielsen, M., & Peters, B. (2016). The length distribution of class I-restricted T cell epitopes is determined by both peptide supply and MHC allele-specific binding preference. Journal of Immunology, 196(4), 1480–1487. https://doi.org/10.4049/jimmunol.1501721
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein-small ligand complexes: The PRODIGY-LIG web server . Bioinformatics (Oxford, England), 35(9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The Lancet, 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410.
  • Wong, G., Bi, Y.-H., Wang, Q.-H., Chen, X.-W., Zhang, Z.-G., & Yao, Y.-G. (2020). Zoonotic origins of human coronavirus 2019 (HCoV-19/SARS-CoV-2): Why is this work important? Zoological Research, 41(3), 213–219.
  • Woolard, S. N., & Kumaraguru, U. (2010). Viral vaccines and CTL response. Journal of Biomedicine and Biotechnology, 2010, 1–6. https://doi.org/10.1155/2010/141657
  • Wu, D., Wu, T., Liu, Q., & Yang, Z. (2020). The SARS-CoV-2 outbreak: What we know. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 94, 44–48. https://doi.org/10.1016/j.ijid.2020.03.004
  • Yang, X., & Yu, X. (2009). An introduction to epitope prediction methods and software. Reviews in Medical Virology, 19(2), 77–96. https://doi.org/10.1002/rmv.602
  • Yang, H.-C., Chen, C., Wang, J.-H., Liao, H.-C., Yang, C.-T., Chen, C.-W., Lin, Y.-C., Kao, C.-H., & Liao, J. C. (2020). Genomic, geographic and temporal distributions of SARS-CoV-2 mutations. Biorxiv. https://www.biorxiv.org/content/101101/2020.04.22.055863v1
  • Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Current Biology : CB, 30(7), 1346–1351. https://doi.org/10.1016/j.cub.2020.03.022
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 588(7836), E6. https://doi.org/10.1038/s41586-020-2951-z
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.