192
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Physiological models to study the effect of molecular crowding on multi-drug bound proteins: insights from SARS-CoV-2 main protease

, &
Pages 13564-13580 | Received 05 Feb 2021, Accepted 01 Oct 2021, Published online: 26 Oct 2021

References

  • Abriata, L. A., Spiga, E., & Dal Peraro, M. (2016). Molecular effects of concentrated solutes on protein hydration, dynamics, and electrostatics. Biophysical Journal, 111(4), 743–755.
  • Ådén, J., & Wittung-Stafshede, P. (2014). Folding of an unfolded protein by macromolecular crowding in vitro. Biochemistry, 53(14), 2271–2277. https://doi.org/10.1021/bi500222g
  • Arakawa, T., & Timasheff, S. N. (1985). Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry, 24(24), 6756–6762.
  • Aumiller, W. M., Jr., Davis, B. W., Hatzakis, E., & Keating, C. D. (2014). Interactions of macromolecular crowding agents and cosolutes with small-molecule substrates: Effect on horseradish peroxidase activity with two different substrates. The Journal of Physical Chemistry B, 118(36), 10624–10632.
  • Bellissent-Funel, M.-C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., van der Spoel, D., Xu, Y., & Garcia, A. E. (2016). Water determines the structure and dynamics of proteins. Chemical Reviews, 116(13), 7673–7697. https://doi.org/10.1021/acs.chemrev.5b00664
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhat, Z. A., Chitara, D., Iqbal, J., Sanjeev, B. S., & Madhumalar, A. (2021). Targeting allosteric pockets of SARS-CoV-2 main protease Mpro. Journal of Biomolecular Structure and Dynamics., 1–16. https://doi.org/10.1080/07391102.2021.1891141
  • Bhat, M. Y., Singh, L. R., & Dar, T. A. (2017). Trimethylamine N-oxide abolishes the chaperone activity of α-casein: An intrinsically disordered protein. Scientific Reports, 7(1), 6572. https://doi.org/10.1038/s41598-017-06836-2
  • Bieschke, J., Herbst, M., Wiglenda, T., Friedrich, R. P., Boeddrich, A., Schiele, F., Kleckers, D., Lopez del Amo, J. M., Grüning, B. A., Wang, Q., Schmidt, M. R., Lurz, R., Anwyl, R., Schnoegl, S., Fändrich, M., Frank, R. F., Reif, B., Günther, S., Walsh, D. M., & Wanker, E. E. (2011). Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nature Chemical Biology, 8(1), 93–101. https://doi.org/10.1038/nchembio.719
  • Case, D., Ben-Shalom, I., Brozell, S., Cerutti, D., Cheatham, T., III., & Cruzeiro, V. (2018). AMBER 2018. University of California.
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
  • De Vivo, M., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry, 59(9), 4035–4061.
  • Deshwal, A., & Maiti, S. (2021). Macromolecular crowding effect on the activity of liposome-bound alkaline phosphatase: A paradoxical inhibitory action. Langmuir, 37(23), 7273–7284. https://doi.org/10.1021/acs.langmuir.1c01177
  • Durai, P., Batool, M., Shah, M., & Choi, S. (2015, Aug). Middle East respiratory syndrome coronavirus: Transmission, virology and therapeutic targeting to aid in outbreak control. Experimental & Molecular Medicine, 47, e181. https://doi.org/10.1038/emm.2015.76
  • Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2003). Graphviz and dynagraph – static and dynamic graph drawing tools. In Graph drawing software (pp. 127–148). Springer-Verlag.
  • Essman, U., Perera, L., Berkowitz, M., Darden, T., Lee, H., & Pedersen, L. (1995). A smooth particle mesh ewald potential. Journal of Chemical Physics., 103(19), 8577–8592. https://doi.org/10.1063/1.470117
  • Estrada, E. (2020). Topological analysis of Sars-CoV-2 main protease. Chaos (Woodbury, NY), 30(6), 061102. https://doi.org/10.1063/5.0013029
  • Feig, M., & Sugita, Y. (2012). Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding. The Journal of Physical Chemistry B, 116(1), 599–605.
  • Feig, M., Yu, I., Wang, P-h., Nawrocki, G., & Sugita, Y. (2017). Crowding in cellular environments at an atomistic level from computer simulations. The Journal of Physical Chemistry B, 121(34), 8009–8025. https://doi.org/10.1021/acs.jpcb.7b03570
  • Gallagher, T., Alexander, P., Bryan, P., & Gilliland, G. L. (1994). Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein g and comparison with NMR. Biochemistry, 33(15), 4721–4729.
  • Gao, M., Estel, K., Seeliger, J., Friedrich, R. P., Dogan, S., Wanker, E. E., Winter, R., & Ebbinghaus, S. (2015). Modulation of human iapp fibrillation: Cosolutes, crowders and chaperones. Physical Chemistry Chemical Physics: PCCP, 17(13), 8338–8348. https://doi.org/10.1039/c4cp04682j
  • Gao, M., & Winter, R. (2015). The effects of lipid membranes, crowding and osmolytes on the aggregation, and fibrillation propensity of human IAPP. Journal of Diabetes Research, 2015, 849017. https://doi.org/10.1155/2015/849017
  • Harada, R., Tochio, N., Kigawa, T., Sugita, Y., & Feig, M. (2013). Reduced native state stability in crowded cellular environment due to protein-protein interactions. Journal of the American Chemical Society, 135(9), 3696–3701.
  • Horn, A. H. (2014). A consistent force field parameter set for zwitterionic amino acid residues. Journal of Molecular Modeling, 20(11), 2478. https://doi.org/10.1007/s00894-014-2478-z
  • Horvath, I., Kumar, R., & Wittung-Stafshede, P. (2021). Macromolecular crowding modulates α-synuclein amyloid fiber growth. Biophysical Journal, 120(16), 3374–3381.
  • Hou, S., Trochimczyk, P., Sun, L., Wisniewska, A., Kalwarczyk, T., & Zhang, X. (2016). How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles. Scientific Reports, 6(1), 1–11.
  • Huang, L., Jin, R., Li, J., Luo, K., Huang, T., Wu, D., Wang, W., Chen, R., & Xiao, G. (2010). Macromolecular crowding converts the human recombinant PRPC to the soluble neurotoxic beta-oligomers. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 24(9), 3536–3543. https://doi.org/10.1096/fj.09-150987
  • Hubbard, R. E., & Kamran Haider, M. (2001). Hydrogen bonds in proteins: Role and strength. e LS.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). Vmd: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jentsch, T. J. (2016). Vracs and other ion channels and transporters in the regulation of cell volume and beyond. Nature Reviews. Molecular Cell Biology, 17(5), 293–307. https://doi.org/10.1038/nrm.2016.29
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., & Zhao, Y. (2020). Structure of m pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582, 289–293.
  • Kanduc, M., Schlaich, A., Schneck, E., & Netz, R. R. (2016). Water-mediated interactions between hydrophilic and hydrophobic surfaces. Langmuir: The ACS Journal of Surfaces and Colloids, 32(35), 8767–8782.
  • Kasahara, K., Re, S., Nawrocki, G., Oshima, H., Mishima-Tsumagari, C., Miyata-Yabuki, Y., Kukimoto-Niino, M., Yu, I., Shirouzu, M., Feig, M., & Sugita, Y. (2021). Reduced efficacy of a Src kinase inhibitor in crowded protein solution. Nature Communications, 12(1), 1–8. https://doi.org/10.1038/s41467-021-24349-5
  • Kastritis, P. L., Rodrigues, J. P. G. L. M., & Bonvin, A. M. J. J. (2014). HADDOCK(2P2I): A biophysical model for predicting the binding affinity of protein-protein interaction inhibitors. Journal of Chemical Information and Modeling, 54(3), 826–836. https://doi.org/10.1021/ci4005332
  • Kuznetsova, I. M., Turoverov, K. K., & Uversky, V. N. (2014). What macromolecular crowding can do to a protein. International Journal of Molecular Sciences, 15(12), 23090–23140. https://doi.org/10.3390/ijms151223090
  • Liao, Y.-T., Manson, A. C., DeLyser, M. R., Noid, W. G., & Cremer, P. S. (2017). Trimethylamine n-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine. Proceedings of the National Academy of Sciences of the United States of America, 114(10), 2479–2484. https://www.pnas.org/content/114/10/2479 https://doi.org/10.1073/pnas.1614609114
  • Löwe, M., Kalacheva, M., Boersma, A. J., & Kedrov, A. (2020). The more the merrier: Effects of macromolecular crowding on the structure and dynamics of biological membranes. The FEBS Journal, 287(23), 5039–5067.
  • Mahdi, M., Mótyán, J. A., Szojka, Z. I., Golda, M., Miczi, M., & Tőzsér, J. (2020). Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2’s main protease. Virology Journal, 17(1), 1–8.
  • MATLAB. (2020). R2020b. The MathWorks Inc.
  • Meagher, K. L., Redman, L. T., & Carlson, H. A. (2003). Development of polyphosphate parameters for use with the amber force field. Journal of Computational Chemistry, 24(9), 1016–1025.
  • Miklos, A. C., Sarkar, M., Wang, Y., & Pielak, G. J. (2011). Protein crowding tunes protein stability. Journal of the American Chemical Society, 133(18), 7116–7120.
  • Neidigh, J. W., Fesinmeyer, R. M., & Andersen, N. H. (2002). Designing a 20-residue protein. Nature Structural Biology, 9(6), 425–430.
  • Oelmeier, S. A., Dismer, F., & Hubbuch, J. (2012). Molecular dynamics simulations on aqueous two-phase systems-single peg-molecules in solution. BMC Biophysics, 5(1), 14.
  • Okamoto, D. N., Oliveira, L. C. G., Kondo, M. Y., Cezari, M. H. S., Szeltner, Z., Juhász, T., Juliano, M. A., Polgár, L., Juliano, L., & Gouvea, I. E. (2010). Increase of SARS-CoV 3CL peptidase activity due to macromolecular crowding effects in the milieu composition. Biological Chemistry, 391(12), 1461–1468. https://doi.org/10.1515/BC.2010.145
  • Ostrowska, N., Feig, M., & Trylska, J. (2019). Modeling crowded environment in molecular simulations. Frontiers in Molecular Biosciences, 6, 86. https://www.frontiersin.org/article/103389/fmolb.2019.00086 https://doi.org/10.3389/fmolb.2019.00086
  • Palhano, F. L., Lee, J., Grimster, N. P., & Kelly, J. W. (2013). Toward the molecular mechanism (s) by which egcg treatment remodels mature amyloid fibrils. Journal of the American Chemical Society, 135(20), 7503–7510.
  • Park, J. O., Rubin, S. A., Xu, Y.-F., Amador-Noguez, D., Fan, J., Shlomi, T., & Rabinowitz, J. D. (2016). Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nature Chemical Biology, 12(7), 482–489. https://doi.org/10.1038/nchembio.2077
  • Ribeiro, J., Ríos-Vera, C., Melo, F., & Schüller, A. (2019). Calculation of accurate interatomic contact surface areas for the quantitative analysis of non-bonded molecular interactions. Bioinformatics (Oxford, England), 35(18), 3499–3501.
  • Rincón, V., Bocanegra, R., Rodríguez-Huete, A., Rivas, G., & Mateu, M. G. (2011). Effects of macromolecular crowding on the inhibition of virus assembly and virus-cell receptor recognition. Biophysical Journal, 100(3), 738–746.
  • Roe, D. R., & Cheatham, T. E. III., (2013). Ptraj and cpptraj: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.
  • Satyam, A., Kumar, P., Fan, X., Gorelov, A., Rochev, Y., Joshi, L., Peinado, H., Lyden, D., Thomas, B., Rodriguez, B., Raghunath, M., Pandit, A., & Zeugolis, D. (2014). Macromolecular crowding meets tissue engineering by self-assembly: A paradigm shift in regenerative medicine. Advanced Materials, 26(19), 3024–3034. https://doi.org/10.1002/adma.201304428
  • Schrödinger LLC. (2015, November). The PyMOL molecular graphics system. version 1.8.
  • Seeliger, J., Werkmüller, A., & Winter, R. (2013). Macromolecular crowding as a suppressor of human iapp fibril formation and cytotoxicity. PloS One, 8(7), e69652.
  • Smith, S., Cianci, C., & Grima, R. (2017). Macromolecular crowding directs the motion of small molecules inside cells. Journal of the Royal Society Interface, 14(131), 20170047. https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0047 https://doi.org/10.1098/rsif.2017.0047
  • Stagg, L., Zhang, S.-Q., Cheung, M. S., & Wittung-Stafshede, P. (2007). Molecular crowding enhances native structure and stability of α/β protein flavodoxin. Proceedings of the National Academy of Sciences, 104(48), 18976–18981. https://www.pnas.org/content/104/48/18976
  • Tan, Y. S., Reeks, J., Brown, C. J., Thean, D., Ferrer Gago, F. J., Yuen, T. Y., Goh, E. T. L., Lee, X. E. C., Jennings, C. E., Joseph, T. L., Lakshminarayanan, R., Lane, D. P., Noble, M. E. M., & Verma, C. S. (2016). Benzene probes in molecular dynamics simulations reveal novel binding sites for ligand design. The Journal of Physical Chemistry Letters, 7(17), 3452–3457. https://doi.org/10.1021/acs.jpclett.6b01525
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174.
  • Yadav, J. K. (2012). Macromolecular crowding enhances catalytic efficiency and stability of α-amylase. ISRN Biotechnology, 2013, 737805. https://doi.org/10.5402/2013/737805
  • Yu, I., Mori, T., Ando, T., Harada, R., Jung, J., Sugita, Y., & Feig, M. (2016). Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife, 5, e19274. https://doi.org/10.7554/eLife.19274
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, NY), 368(6489), 409–412.
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273.
  • Zimmerman, S. B., & Minton, A. P. (1993). Macromolecular crowding: Biochemical, biophysical, and physiological consequences. Annual Review of Biophysics and Biomolecular Structure, 22, 27–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.