128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Maturation of siRNA by strand separation: Steered molecular dynamics study

ORCID Icon, &
Pages 13682-13692 | Received 20 Jul 2021, Accepted 08 Oct 2021, Published online: 02 Nov 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Bansal, M., Bhattacharyya, D., & Ravi, B. (1995). NUPARM and NUCGEN: Software for analysis and generation of sequence dependent nucleic acid structures. Computer Applications in the Biosciences, 11(3), 281–287. https://doi.org/10.1093/bioinformatics/11.3.281
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics., 81(8), 3684–3690. [Database] https://doi.org/10.1063/1.448118
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles . Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Biswas, A., Chakraborty, K., Dutta, C., Mukherjee, S., Gayen, P., Jan, S., Mallick, A. M., Bhattacharyya, D., & Sinha Roy, R. (2019). Engineered histidine-enriched facial lipopeptides for enhanced intracellular delivery of functional siRNA to triple negative breast cancer cells. ACS Applied Materials & Interfaces, 11(5), 4719–4736.
  • Bockelmann, U., Essevaz-Roulet, B., & Heslot, F. (1997). Molecular stick-slip motion revealed by opening DNA with piconewton forces. Physical Review Letters, 79(22), 4489–4492. https://doi.org/10.1103/PhysRevLett.79.4489
  • Chandra, V., Hannan, Z., Xu, H., & Mandal, M. (2017). Single-molecule analysis reveals multi-state folding of a guanine riboswitch. Nature Chemical Biology, 13(2), 194–201. https://doi.org/10.1038/nchembio.2252
  • Cocco, S., Monasson, R., & Marko, J. F. (2001). Force and kinetic barriers to unzipping of the DNA double helix. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8608–8613.
  • Cook, P. (1999). The organization of replication and transcription. Science (New York, N.Y.), 284(5421), 1790–1795. https://doi.org/10.1126/science.284.5421.1790
  • Danilowicz, C., Kafri, Y., Conroy, R. S., Coljee, V. W., Weeks, J., & Prentiss, M. (2004). Measurement of the phase diagram of dna unzipping in the temperature-force plan. Physical Review Letters, 93(7), 078101. https://doi.org/10.1103/PhysRevLett.93.078101
  • Danilowicz, C., Limouse, C., Hatch, K., Conover, A., Coljee, V. W., Kleckner, N., & Prentiss, M. (2009). The structure of DNA overstretched from the 5'5' ends differs from the structure of DNA overstretched from the 3'3' ends. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13196–13201. https://doi.org/10.1073/pnas.0904729106
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. Journal of Chemical Physics., 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davidson, B. L., & Jr., & McCray, P. B. (2011). Current prospects for RNA interference-based therapies. Nature Reviews. Genetics, 12(5), 329–340.
  • Dogini, D. B., Pascoal, V. D. A. B., Avansini, S. H., Vieira, A. S., Pereira, T. C., & Lopes-Cendes, I. (2014). The new world of RNAs. Genetics and Molecular Biology, 37(1 Suppl), 285–293.
  • Essevaz-Roulet, B., Bockelmann, U., & Heslot, F. (1997). Mechanical separation of the complementary strands of DNA. Proceedings of the National Academy of Sciences of the United States of America, 94(22), 11935–11940.
  • Fellmann, C., & Lowe, S. W. (2014). Stable RNA interference rules for silencing. Nature Cell Biology, 16(1), 10–18.
  • Filipowicz, W. (2005). RNAi: The nuts and bolts of the RISC machine. Cell, 122(1), 17–20. https://doi.org/10.1016/j.cell.2005.06.023
  • Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811.
  • Ghosh, S., & Chakrabarti, R. (2016). Spontaneous unzipping of xylonucleic acid assisted by a single-walled carbon nanotube: A computational study. The Journal of Physical Chemistry. B, 120(15), 3642–3652.
  • Guo, P., & Lee, T. (2007). Viral nanomotors for packaging of dsDNA and dsRNA. Molecular Microbiology, 64(4), 886–903. 17501915]
  • Gupta, A., & Bansal, M. (2016). The role of sequence in altering the unfolding pathway of an RNA pseudoknot: A steered molecular dynamics study. Physical Chemistry Chemical Physics, 18(41), 28767–28780. https://doi.org/10.1039/C6CP04617G
  • Hatch, K., Danilowicz, C., Coljee, V., & Prentiss, M. (2008). Demonstration that the shear force required to separate short double-stranded DNA does not increase significantly with sequence length for sequences longer than 25 base pairs. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 78(1 Pt 1), 011920.
  • Herrero-Galán, E., Fuentes-Perez, M. E., Carrasco, C., Valpuesta, J. M., Carrascosa, J. L., Moreno-Herrero, F., & Arias-Gonzalez, J. R. (2013). Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. Journal of the American Chemical Society, 135(1), 122–131. https://doi.org/10.1021/ja3054755
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697.https://doi.org/10.1103/PhysRevA.31.1695
  • Huang, H., Ji, H., Li, H., Jing, Q., Labby, K. J., Martásek, P., Roman, L. J., Poulos, T. L., & Silverman, R. B. (2012). Selective monocationic inhibitors of neuronal nitric oxide synthase. Binding mode insights from molecular dynamics simulations. Journal of the American Chemical Society, 134(28), 11559–11572. https://doi.org/10.1021/ja302269r
  • Jung, S., Cha, M., Park, J., Jeong, N., Kim, G., Park, C., Ihm, J., & Lee, L. (2010). Dissociation of single-strand DNA: Single-walled carbon nanotube hybrids by Watson-Crick base-pairing. Journal of the American Chemical Society, 132(32), 10964–10966.
  • Knapp, B., Ospina, L., & Charlotte, M. D. (2018). Avoiding false positive conclusions in molecular simulation: The importance of replicas. Journal of Chemical Theory and Computation, 14(12), 6127–6138.
  • Kobayashi, H., & Tomari, Y. (2016). RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochimica et Biophysica Acta, 1859(1), 71–81. https://doi.org/10.1016/j.bbagrm.2015.08.007
  • Kühner, F., Morfill, J., Neher, R. A., Blank, K., & Gaub, H. E. (2007). Force-induced DNA slippage. Biophysical Journal, 92(7), 2491–2497. https://doi.org/10.1529/biophysj.106.095836
  • Kumar, S., Jensen, I., Jacobsen, J. L., & Guttmann, A. J. (2007). Role of conformational entropy in force-induced biopolymer unfolding. Physical Review Letters, 98(12), 128101.
  • Kumar, S., & Li, M. S. (2010). Biomolecules under mechanical force. Physics Reports., 486(1–2), 1, 1–74. https://doi.org/10.1016/j.physrep.2009.11.001
  • Kundu, S., Mukherjee, S., & Bhattacharyya, D. (2017). Melting of polymeric DNA double helix at elevated temperature: A molecular dynamics approach. Journal of Molecular Modeling, 23(8), 226. https://doi.org/10.1007/s00894-017-3398-5
  • Kwak, P. B., & Tomari, Y. (2012). The N domain of argonaute drives duplex unwinding during RISC assembly. Nature Structural & Molecular Biology, 19(2), 145–151. https://doi.org/10.1038/nsmb.2232
  • Landry, M. P., Vukovic, L., Kruss, S., Bisker, G., Landry, A. M., Islam, S., Jain, R., Schulten, K., & Strano, M. S. (2015). Comparative dynamics and sequence dependence of DNA and RNA binding to single walled carbon nanotubes. The Journal of Physical Chemistry C, 119(18), 10048–10058. https://doi.org/10.1021/jp511448e
  • Lemkul, J. A., & Bevan, D. R. (2010). Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. The Journal of Physical Chemistry. B, 114(4), 1652–1660.
  • Li, J., Xue, S., & Mao, Z. W. (2016). Nanoparticle delivery systems for siRNA-based therapeutics. Journal of Materials Chemistry. B, 4(41), 6620–6639.
  • Lipfert, J., Skinner, G. M., Keegstra, J. M., Hensgens, T., Jager, T., Dulin, D., Köber, M., Yu, Z., Donkers, S. P., Chou, F.-C., Das, R., & Dekker, N. H. (2014). Double-stranded RNA under force and torque: Similarities to and striking differences from double-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15408–15413. https://doi.org/10.1073/pnas.1407197111
  • Mallick Gupta, A., Mukherjee, S., Dutta, A., Mukhopadhyay, J., Bhattacharyya, D., & Mandal, S. (2017). Identification of a suitable promoter for the sigma factor of Mycobacterium tuberculosis. Mol. BioSystems, 13(11), 2370–2378. https://doi.org/10.1039/C7MB00317J
  • Mandal, M., Lee, M., Barrick, J. E., Weinberg, Z., Emilsson, G. M., Ruzzo, W. L., & Breaker, R. R. (2004). A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science, 306, 275–279.
  • Marin-Gonzalez, A., Vilhena, J. G., Perez, R., & Moreno-Herrero, F. (2017). Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 114(27), 7049–7054.
  • Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110(5), 563–574.
  • Meister, G., & Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature, 431(7006), 343–349.
  • Mukherjee, S., Bansal, M., & Bhattacharyya, D. (2006). Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: Crystal structure database analysis. Journal of Computer-Aided Molecular Design, 20(10-11), 629–645.
  • Mukherjee, S., Majumdar, S., & Bhattacharyya, D. (2005). Role of hydrogen bonds in protein-DNA recognition: Effect of nonplanar amino groups. The Journal of Physical Chemistry. B, 109(20), 10484–10492.
  • Needle, S., Schneider, B., & Berman, H. M. (2009). Structural Bioinformatics, 2nd ed. (P. E. Bourne & H. Weissig, eds.), pp. 41–76.
  • Neuwald, A. F., Aravind, L., Spouge, J. L., & Koonin, E. V. (1999). AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Research, 9(1), 27–43.
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics., 81(1), 511–519. https://doi.org/10.1063/1.447334
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics., 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Olson, W. K., Bansal, M., Burley, S. K., Dickerson, R. E., Gerstein, M., Harvey, S. C., Heinemann, U., Lu, X. J., Neidle, S., Shakked, Z., Sklenar, H., Suzuki, M., Tung, C. S., Westhof, E., Wolberger., & Berman, HM. (2001). A standard reference frame for the description of nucleic acid base-pair geometry. Journal of Molecular Biology, 313(1), 229–237.
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics., 52(12), 7182–7190. [Database] https://doi.org/10.1063/1.328693
  • Pingali, P. K., Halder, S., Mukherjee, D., Basu, S., Banerjee, R., Choudhury, D., & Bhattacharyya, D. (2014). Analysis of stacking overlap in nucleic acid structures: Algorithm and application. Journal of Computer-Aided Molecular Design, 28(8), 851–867.
  • Saecker, R. M., Record, M. T., Jr., & deHaseth, P. L. (2011). Mechanism of bacterial transcription initiation: RNA polymerase – promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. Journal of Molecular Biology, 412(5), 754–771. https://doi.org/10.1016/j.jmb.2011.01.018
  • Santosh, M., Panigrahi, S., Bhattacharyya, D., Sood, A. K., & Maiti, P. K. (2012a). Unzipping and binding of small interfering RNA with single walled carbon nanotube: A platform for small interfering RNA delivery. The Journal of Chemical Physics, 136(6), 065106.
  • Santosh, M., Panigrahi, S., Bhattacharyya, D., Sood, A. K., & Maiti, P. K. (2012b). Unraveling siRNA unzipping kinetics with graphene. The Journal of Chemical Physics, 137(5), 054903.
  • Sashital, D. G., & Doudna, J. A. (2010). Structural insights into RNA interference. Current Opinion in Structural Biology, 20(1), 90–97. https://doi.org/10.1016/j.sbi.2009.12.001
  • Savinov, A., Perez, C. F., & Block, S. M. (2014). Single-molecule studies of riboswitch folding. Biochimica et Biophysica Acta, 1839(10), 1030–1045. https://doi.org/10.1016/j.bbagrm.2014.04.005
  • Schumakovitch, I., Grange, W., Strunz, T., Bertoncini, P., Güntherodt, H. J., & Hegner, M. (2002). Temperature dependence of unbinding forces between complementary DNA strands. Biophysical Journal, 82(1 Pt 1), 517–521.
  • Singh, R. P., Blossey, R., & Cleri, F. (2013). Structure and mechanical characterization of DNA i-motif nanowires by molecular dynamics simulation. Biophysical Journal, 105(12), 2820–2831. https://doi.org/10.1016/j.bpj.2013.10.021
  • Strunz, T., Oroszlan, K., Schäfer, R., & Güntherodt, H. J. (1999). Dynamic force spectroscopy of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11277–11282.
  • Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G. S., Tuschl, T., & Patel, D. J. (2009). Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 461(7265), 754–761.
  • Wong, K. Y., & Pettitt, B. M. (2008). The pathway of oligomeric DNA melting investigated by molecular dynamics simulations. Biophysical Journal, 95(12), 5618–5626.
  • Wu, S. Y., Lopez-Berestein, G., Calin, G. A., & Sood, A. K. (2014). RNAi therapies: Drugging the undruggable. Science Translational Medicine, 6(240), 240. https://doi.org/10.1126/scitranslmed.3008362
  • Yakovchuk, P., Protozanova, E., & Frank-Kamenetskii, M. D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Research, 34(2), 564–574.
  • Yuan, Y. R., Pei, Y., Chen, H. Y., Tuschl, T., & Patel, D. J. (2006). A Potential protein-RNA recognition event along the RISC-loading pathway from the structure of A. aeolicus argonaute with externally bound siRNA. Structure (London, England: 1993), 14(10), 1557–1565. https://doi.org/10.1016/j.str.2006.08.009
  • Zgarbova, M., Otyepka, M., Sponer, J., Lankas, F., & Jurecka, P. (2014). Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. Journal of Chemical Theory and Computation, 10(8), 3177–3189.
  • Zuo, Y., & Steitz, T. A. (2015). Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Molecular Cell, 58(3), 534–540. https://doi.org/10.1016/j.molcel.2015.03.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.