146
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

How proton transfer affects the helical parameters in DNA:DNA microhelices

, , &
Pages 13759-13777 | Received 29 Aug 2021, Accepted 11 Oct 2021, Published online: 22 Nov 2021

References

  • Alcolea Palafox, M. (2017). Computational chemistry applied to vibrational spectroscopy: A tool for characterization of nucleic acid bases and some of their 5-substituted derivatives. In P. Ramasami (Ed.), Computational sciences (Book) (Vol. 5, pp. 117–151). Walter de Gruyter, Inc.
  • Alcolea Palafox, M. (2019). Effect of the sulfur atom on S2 and S4 positions of the uracil ring in different DNA:RNA hybrid microhelixes with three nucleotide base pairs. Biopolymers, 110(3), e23247. https://doi.org/10.1002/bip.23247
  • Alcolea Palafox, M., Franklin Benial, A. M., & Rastogi, V. K. (2019). Biomolecules of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil: A DFT study of the hydration, molecular docking and effect in DNA:RNA microhelices. International Journal of Molecular Sciences, 20(14), 3477–3507. https://doi.org/10.3390/ijms20143477
  • Alcolea Palafox, M., & Iza, N. (2010). Tautomerism of the Natural Thymidine Nucleoside and the antiviral analogue D4T. Structure and influence of an aqueous environment using MP2 and DFT methods. Physical Chemistry Chemical Physics, 12(4), 881–893. https://doi.org/10.1039/b915566j
  • Alcolea Palafox, M., Iza, N., de la Fuente, M., & Navarro, R. (2009). Simulation of the first hydration shell of nucleosides D4T and Thymidine: Structures obtained using MP2 and DFT methods. The Journal of Physical Chemistry B, 113(8), 2458–2476. https://doi.org/10.1021/jp806684v
  • Bebenek, K., Pedersen, L. C., & Kunkel, T. A. (2011). Replication infidelity via a mismatch with Watson–Crick geometry. Proceedings of the National Academy of Sciences of the United States of America, 108(5), 1862–1867. https://doi.org/10.1073/pnas.1012825108
  • Bloomfield, V. A., Crothers, D. M., & Tinoco, I., Jr. (2000). Nucleic acids: Structures, properties and functions. University Science Books.
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. https://doi.org/10.1080/00268977000101561
  • Brovarets, O. O., & Hovorun, D. M. (2010). How stable are the mutagenic tautomers of DNA bases? Biopolymers and Cell, 26(1), 72–76. https://doi.org/10.7124/bc.000147
  • Brovarets', O. O., & Hovorun, D. M. (2013). Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Journal of Computational Chemistry, 34(30), 2577–2590. https://doi.org/10.1002/jcc.23412
  • Brovarets', O. O., & Hovorun, D. M. (2014a). DPT tautomerisation of the G·A(syn) and A*·G*(syn) DNA mismatches: A QM/QTAIM combined atomistic investigation. Physical Chemistry Chemical Physics, 16(19), 9074–9085. https://doi.org/10.1039/c4cp00488d
  • Brovarets', O. O., & Hovorun, D. M. (2014b). How does the long G·G* Watson–Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Physical Chemistry Chemical Physics, 16(30), 15886–15899. https://doi.org/10.1039/c4cp01241k
  • Brovarets', O. O., & Hovorun, D. M. (2015a). The nature of the transition mismatches with Watson–Crick architecture: The G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Journal of biomolecular structure & dynamics, 33(5), 925–945. https://doi.org/10.1080/07391102.2014.924879
  • Brovarets', O. O., & Hovorun, D. M. (2015b). Proton tunneling in the A·T Watson–Crick DNA base pair: Myth or reality? Journal of Biomolecular Structure & Dynamics, 33(12), 2716–2720. https://doi.org/10.1080/07391102.2015.1092886
  • Brovarets', O. O., & Hovorun, D. M. (2015c). Tautomeric transition between wobble А·С DNA base mispair and Watson–Crick-like A·C* mismatch: Microstructural mechanism and biological significance. Physical Chemistry Chemical Physics, 17(23), 15103–15110. https://doi.org/10.1039/C5CP01568E
  • Brovarets’, O. O., & Hovorun, D. M. (2015d). Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A· G and C· T DNA base mispairs: A quantum-chemical picture. RSC Advances, 5(81), 66318–66333. https://doi.org/10.1039/C5RA11773A
  • Brovarets’, O. O., & Hovorun, D. M. (2015e). New structural hypostases of the AT and GC Watson–Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: A QM/QTAIM prediction. RSC Advances, 5(121), 99594–99605. https://doi.org/10.1039/C5RA19971A
  • Brovarets', O. O., Kolomiets, I. M., & Hovorun, D. M. (2012). Elementary molecular mechanisms of the spontaneous point mutations in DNA: A novel quantum-chemical insight into the classical understanding. In Tomofumi Tada (Ed.), Quantum chemistry-molecules for innovations (Chapter 4, pp. 59–102). InTech Europe. https://doi.org/10.5772/35743
  • Brovarets', O. O., Oliynyk, T. A., & Hovorun, D. M. (2019). Novel tautomerisation mechanisms of the biologically important conformers of the reverse Löwdin, Hoogsteen, and reverse Hoogsteen G*·C* DNA base pairs via proton transfer: A quantum-mechanical survey. Frontiers in Chemistry, 7, 597, 1-25. https://doi.org/10.3389/fchem.2019.00597
  • Brovarets', O. O., Tsiupa, K. S., Dinets, A., & Hovorun, D. M. (2018). Unexpected routes of the mutagenic tautomerization of the T nucleobase in the classical A·T DNA base pairs: A QM/QTAIM comprehensive view. Frontiers in Chemistry, 6, 532. https://doi.org/10.3389/fchem.2018.00532
  • Brovarets', O. O., Tsiupa, K. S., & Hovorun, D. M. (2018). Novel pathway for mutagenic tautomerization of classical А·Т DNA base pairs via sequential proton transfer through quasi-orthogonal transition states: A QM/QTAIM investigation. PLoS One, 13(6), e0199044. https://doi.org/10.1371/journal.pone.0199044
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014a). Structural, energetic and tautomeric properties of the T·T*/T*·T DNA mismatch involving mutagenic tautomer of thymine: A QM and QTAIM insight. Chemical Physics Letters, 592, 247–255. https://doi.org/10.1016/j.cplett.2013.12.034
  • Brovarets', O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014b). Is the DPT tautomerization of the long A·G Watson–Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Journal of Computational Chemistry, 35(6), 451–466. https://doi.org/10.1002/jcc.23515
  • Chahinian, M., Seba, H. B., & Ancian, B. (1998). Hydration structure of uracil as studied by 1D and 2D heteronuclear Overhauser spectroscopy: Evidence for the formation of a trihydrate in the first salvation. Chemical Physics Letters, 285(5–6), 337–345. https://doi.org/10.1016/S0009-2614(98)00109-2
  • Churchill, C. D. M., & Wetmore, S. D. (2011). Developing a computational model that accurately reproduces the structural features of a dinucleoside monophosphate unit within B-DNA. Physical Chemistry Chemical Physics, 13(36), 16373–16383. https://doi.org/10.1039/c1cp21689a
  • Cognet, J. A. H., Gabarro-Arpa, J., Le Bret, M., van der Marel, G. A., van Boom, J. H., & Fazakerley, G. V. (1991). Solution conformation of an oligonucleotide containing a G.G mismatch determined by nuclear magnetic resonance and molecular mechanics. Nucleic Acids Research, 19(24), 6771–6779. https://doi.org/10.1093/nar/19.24.6771
  • Danilov, V. I., Anisimov, V. M., Kurita, N., & Hovorun, D. M. (2005). MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chemical Physics Letters, 412(4–6), 285–293. https://doi.org/10.1016/j.cplett.2005.06.123
  • Danilov, V. I., van Mourik, T., Kurita, N., Wakabayashi, H., Tsukamoto, T., & Hovorun, D. M. (2009). On the mechanism of the mutagenic action of 5-bromouracil: A DFT study of uracil and 5-bromouracil in a water cluster. The Journal of Physical Chemistry A, 113(11), 2233–2235. https://doi.org/10.1021/jp811007j
  • Danilov, V. I., van Mourik, T., & Poltev, V. I. (2006). Modeling of the ‘hydration shell’ of uracil and thymine in small water clusters by DFT and MP2 methods. Chemical Physics Letters, 429(1–3), 255–260. https://doi.org/10.1016/j.cplett.2006.08.035
  • Dickerson, R. E. (1989). Definitions and nomenclature of nucleic acid structure components. Nucleic Acids Research, 17(5), 1797–1803. https://doi.org/10.1093/nar/17.5.1797
  • Diekmann, S. (1989). Definitions and nomenclature of nucleic acid structure parameters. Journal of Molecular Biology, 205(4), 787–791. https://doi.org/10.1016/0022-2836(89)90324-0
  • Fogarasi, G. (2008). Water-mediated tautomerization of cytosine to the rare imino form: An ab initio dynamics study. Chemical Physics, 349(1–3), 204–209. https://doi.org/10.1016/j.chemphys.2008.02.016
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., ... & Fox, D. J. (2019). Gaussian 16, revision C.01. Gaussian, Inc.
  • Furmanchuk, A., Isayev, O., Gorb, L., Shishkin, O. V., Hovorun, D. M., & Leszczynski, J. (2011). Novel view on the mechanism of water-assisted proton transfer in the DNA bases: Bulk water hydration. Physical Chemistry Chemical Physics, 13(10), 4311–4317. https://doi.org/10.1039/c0cp02177f
  • Gould, I. R., Burton, N. A., Hall, R. J., & Hillier, I. H. (1995). Tautomerism in uracil, cytosine and guanine: A comparison of electron correlation predicted by ab initio and density functional theory methods. Journal of Molecular Structure: THEOCHEM, 331(1–2), 147–154. https://doi.org/10.1016/0166-1280(94)03887-Q
  • Hendricks, J. H., Lyapustina, S. A., Clercq, H. L., & Bowen, K. H. (1998). The dipole bound-to-covalent anion transformation in uracil. Journal of Chemical Physics, 108(1), 8–11. https://doi.org/10.1063/1.475360
  • Heuberger, B. D., Pal, A., Del Frate, F., Topkar, V. V., & Szostak, J. W. (2015). Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. Journal of the American Chemical Society, 137(7), 2769–2775. https://doi.org/10.1021/jacs.5b00445
  • Hu, X., Li, H., Liang, W., & Han, S. (2005). Systematic study of the tautomerism of uracil induced by proton transfer. Exploration of water stabilization and mutagenicity. The Journal of Physical Chemistry B, 109(12), 5935–5944. https://doi.org/10.1021/jp044665p
  • Hunter, R. S., & van Mourik, T. (2012). DNA base stacking: The stacked uracil/uracil and thymine/thymine minima. Journal of Computational Chemistry, 33(27), 2161–2172. https://doi.org/10.1002/jcc.23052
  • Karabıyık, H., Sevinçek, R., & Karabıyık, H. (2014). π-Cooperativity effect on the base stacking interactions in DNA: Is there a novel stabilization factor coupled with base pairing H-bonds? Physical Chemistry Chemical Physics, 16(29), 15527–15538. https://doi.org/10.1039/c4cp00997e
  • Kim, H.-S., Ahn, D.-S., Chung, S.-Y., Kim, S. K., & Lee, S. (2007). Tautomerization of adenine facilitated by water: Computational study of microsolvation. The Journal of Physical Chemistry A, 111(32), 8007–8012. https://doi.org/10.1021/jp074229d
  • Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., & Zakrzewska, K. (2009). Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research, 37(17), 5917–5929. https://doi.org/10.1093/nar/gkp608
  • Leslie, A. G. W., Arnott, S., Chandrasekaran, R., & Ratliff, R. L. (1980). Polymorphism of DNA double helices. Journal of Molecular Biology, 143(1), 49–72. https://doi.org/10.1016/0022-2836(80)90124-2
  • Löwdin, P. O. (1963). Proton tunneling in DNA and its biological implications. Reviews of Modern Physics, 35(3), 724–732. https://doi.org/10.1103/RevModPhys.35.724
  • Maehigashi, T., Hsiao, C., Woods, K. K., Moulaei, T., Hud, N. V., & Williams, L. D. (2012). B-DNA structure is intrinsically polymorphic: Even at the level of base pair positions. Nucleic Acids Research, 40(8), 3714–3722. https://doi.org/10.1093/nar/gkr1168
  • Mentel, Ł. M., & Baerends, E. J. (2014). Can the counterpoise correction for basis set superposition effect be justified? Journal of Chemical Theory and Computation, 10(1), 252–267. https://doi.org/10.1021/ct400990u
  • Mohamed, T. A., Shabaan, I. A., Zoghaib, W. M., Husband, J., Farag, R. S., & Alajhaz, A. E. N. M. A. (2009). Tautomerism, normal coordinate analysis, vibrational assignments, calculated IR, Raman and NMR spectra of adenine. Journal of Molecular Structure, 938(1–3), 263–276. https://doi.org/10.1016/j.molstruc.2009.09.040
  • Mohammadi, M., & Ramazani, S. (2016). Theoretical kinetics study of thymine tautomerism and interaction of Na+ with its tautomers. Molecular Physics, 114(22), 3356–3374. https://doi.org/10.1080/00268976.2016.1232845
  • van Mourik, T. (2009). Comment on ‘To stack or not to stack: Performance of a new density functional for the uracil and thymine dimers’ [Chem. Phys. Lett. 459 (2008) 164]. Chemical Physics Letters, 473(1–3), 206–208. https://doi.org/10.1016/j.cplett.2009.03.050
  • Neidle, S. (2008). Principles of nucleic acid structure. In The building-blocks of DNA and RNA (Chapter 2). Elsevier.
  • Podolyan, Y., Gorb, L., & Leszczynski, J. (2003). Ab initio study of the prototropic tautomerism of cytosine and guanine and their contribution to spontaneous point mutations. International Journal of Molecular Sciences, 4(7), 410–421. https://doi.org/10.3390/i4070410
  • Rejnek, J., Hanus, M., Kabelác, M., Ryjácek, F., & Hobza, P. (2005). Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Part 4. Uracil and thymine. Physical Chemistry Chemical Physics, 7(9), 2006–2017. https://doi.org/10.1039/b501499a
  • Riley, K. E., & Hobza, P. (2011). Noncovalent interactions in biochemistry. WIREs Computational Molecular Science, 1(1), 3–17. https://doi.org/10.1002/wcms.8
  • Riley, K. E., Pitonák, M., Jurecka, P., & Hobza, P. (2010). Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chemical Reviews, 110(9), 5023–5063. https://doi.org/10.1021/cr1000173
  • Saenger, W. (1984). Principles in nucleic acid structure. Springer Verlag Publishers.
  • Shishkin, O. V., Pelmenschikov, A., Hovorun, D. M., & Leszczynski, J. (2000a). Theoretical analysis of low-lying vibrational modes of free canonical 2-deoxyribonucleosides. Chemical Physics, 260(3), 317–325. https://doi.org/10.1016/S0301-0104(00)00251-2
  • Shishkin, O. V., Pelmenschikov, A., Hovorun, D. M., & Leszczynski, J. (2000b). Molecular structure of free canonical 2′-deoxyribonucleosides: A density functional study. Journal of Molecular Structure, 526(1–3), 329–341. https://doi.org/10.1016/S0022-2860(00)00497-X
  • Shishkin, O. V., Sponer, J., & Hobza, P. (1999). Intramolecular flexibility of DNA bases in adenine-thymine and guanine-cytosine Watson–Crick base pairs. Journal of Molecular Structure, 477(1–3), 15–21. https://doi.org/10.1016/S0022-2860(98)00603-6
  • Sordo, J. A. (2001). On the use of the Boys–Bernardi function counterpoise procedure to correct barrier heights for basis set superposition error. Journal of Molecular Structure: THEOCHEM), 537(1–3), 245–251. https://doi.org/10.1016/S0166-1280(00)00681-3
  • Srivastava, R. (2019). The role of proton transfer on mutations. Frontiers in Chemistry, 7(536), 1–17. https://doi.org/10.3389/fchem.2019.00536
  • Wang, W., Hellinga, H. W., & Beese, L. S. (2011). Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 108(43), 17644–17648. https://doi.org/10.1073/pnas.1114496108
  • Yokoyama, S., Watanabe, T., Murao, K., Ishikura, H., Yamaizumi, Z., Nishimura, S., & Miyazawa, T. (1985). Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proceedings of the National Academy of Sciences of the United States of America, 82(15), 4905–4909. https://doi.org/10.1073/pnas.82.15.4905
  • Yurenko, Y. P., Novotný, J., Nikolaienko, T. Y., & Marek, R. (2016). Nucleotides containing variously modified sugars: Energetics, structure, and mechanical properties. Physical Chemistry Chemical Physics, 18(3), 1615–1628. https://doi.org/10.1039/c5cp05478h
  • Yurenko, Y. P., Zhurakivsky, R. O., Samijlenko, S. P., & Hovorun, D. M. (2011). Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson–Crick pairs. Quantum chemical and AIM analysis. Journal of Biomolecular Structure & Dynamics, 29(1), 51–65. https://doi.org/10.1080/07391102.2011.10507374
  • Zhao, Y., & Truhlar, D. G. (2008a). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41(2), 157–167. https://doi.org/10.1021/ar700111a
  • Zhao, Y., & Truhlar, D. G. (2008b). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x
  • Zhurkin, V. B., Lysov, Y. P., & Ivanov, V. I. (1975). Computer analysis of conformational possibilities of double-helical DNA. FEBS Letters, 59(1), 44–47. https://doi.org/10.1016/0014-5793(75)80337-1
  • Zubatiuk, T. A., Shishkin, O. V., Gorb, L., Hovorun, D. M., & Leszczynski, J. (2013). B-DNA characteristics are preserved in double stranded. d(A)3·d(T)3 and d(G)3·d(C)3 mini-helixes: Conclusions from DFT/M06-2X study. Physical Chemistry Chemical Physics, 15(41), 18155–18166. https://doi.org/10.1039/c3cp51584b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.