191
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design the RNA aptamer of PCA3 long non-coding ribonucleic acid by the coarse-grained molecular mechanics

, &
Pages 13833-13847 | Received 30 Aug 2021, Accepted 13 Oct 2021, Published online: 25 Oct 2021

References

  • Alder, B. J., & Wainwright, T. E. (1959). Studies in molecular dynamics. I. General method. The Journal of Chemical Physics, 31(2), 459–466. https://doi.org/10.1063/1.1730376
  • Arifuzzaman, M. (2020). Targeting galectin-3 by natural glycosides: A computational approach. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 14. https://doi.org/10.1007/s13721-020-0219-z
  • Barnwal, R. P., Yang, F., & Varani, G. (2017). Applications of NMR to structure determination of RNAs large and small. Archives of Biochemistry and Biophysics, 628, 42–56. https://doi.org/10.1016/j.abb.2017.06.003
  • Bartonicek, N., Maag, J. L. V., & Dinger, M. E. (2016). Long noncoding RNAs in cancer: Mechanisms of action and technological advancements. Molecular Cancer, 15(1), 43. https://doi.org/10.1186/s12943-016-0530-6
  • Berman, H. M. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical Journal, 63(3), 751–759. https://doi.org/10.1016/S0006-3495(92)81649-1
  • Bhan, A., Soleimani, M., & Mandal, S. S. (2017). Long noncoding RNA and cancer: A new paradigm. Cancer Research, 77(15), 3965–3981. https://doi.org/10.1158/0008-5472.CAN-16-2634
  • Boylan, S. A., Thomas Md Fau - Price, C. W., & Price, C. W. (1991). Genetic method to identify regulons controlled by nonessential elements: isolation of a gene dependent on alternate transcription factor sigma B of Bacillus subtilis. (in eng), no. 0021-9193 (Print).
  • Chong, Z.-S., Ohnishi, S., Yusa, K., & Wright, G. J. (2018). Pooled extracellular receptor-ligand interaction screening using CRISPR activation. Genome Biology, 19(1), 205. https://doi.org/10.1186/s13059-018-1581-3
  • Ding, F., Sharma S Fau - Chalasani, P., Chalasani P Fau - Demidov, V. V., Demidov Vv Fau - Broude, N. E., Broude Ne Fau - Dokholyan, N. V., & Dokholyan, N. V. (2008). Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms, no. 1469-9001 (Electronic).
  • Dykes, I. M., & Emanueli, C. (2017). Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics, Proteomics & Bioinformatics, 15(3), 177–186. https://doi.org/10.1016/j.gpb.2016.12.005
  • Egli, M., Minasov, G., Su, L., & Rich, A. (2002). Metal ions and flexibility in a viral RNA pseudoknot at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4302–4307. https://doi.org/10.1073/pnas.062055599
  • Fradet, Y., Saad, F., Aprikian, A., Dessureault, J., Elhilali, M., Trudel, C., Mâsse, B., Piché, L., & Chypre, C. (2004). uPM3, a new molecular urine test for the detection of prostate cancer. Urology, 64(2), 311–315. https://doi.org/10.1016/j.urology.2004.03.052
  • Guo, Z., Li, B., Cheng, L.-T., Zhou, S., McCammon, J. A., & Che, J. (2015). Identification of protein–ligand binding sites by the level-set variational implicit-solvent approach. Journal of Chemical Theory and Computation, 11(2), 753–765. https://doi.org/10.1021/ct500867u
  • Hajdin, C. E., Ding, F., Dokholyan, N. V., & Weeks, K. M. (2010). On the significance of an RNA tertiary structure prediction. RNA, 16(7), 1340–1349. https://doi.org/10.1261/rna.1837410
  • Hajduk, P. J., Huth, J. R., & Fesik, S. W. (2005). Druggability indices for protein targets derived from NMR-based screening data. Journal of Medicinal Chemistry, 48(7), 2518–2525. https://doi.org/10.1021/jm049131r
  • Henkelman, G., & Jónsson, H. (2000). Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113(22), 9978–9985. https://doi.org/10.1063/1.1323224
  • Henkelman, G., Uberuaga, B. P., & Jónsson, H. (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics, 113(22), 9901–9904. https://doi.org/10.1063/1.1329672
  • Heo, J. B., Lee, Y.-S., & Sung, S. (2013). Epigenetic regulation by long noncoding RNAs in plants. Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology, 21(6–7), 685–693. https://doi.org/10.1007/s10577-013-9392-6
  • Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13), 3429–3431. https://doi.org/10.1093/nar/gkg599
  • Irbäck, A., & Mohanty, S. (2014). All-atom Monte Carlo simulations of protein folding and aggregation. In A. Liwo (Ed.), Computational methods to study the structure and dynamics of biomolecules and biomolecular processes: From bioinformatics to molecular quantum mechanics (pp. 433–444). Springer Berlin Heidelberg.
  • Jiang, W., Liu, Y., Liu, R., Zhang, K., & Zhang, Y. (2015). The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Reports, 11(1), 137–148. https://doi.org/10.1016/j.celrep.2015.03.008
  • Kazimierczyk, M., Kasprowicz, M. K., Kasprzyk, M. E., & Wrzesinski, J. (2020). Human long noncoding RNA interactome: Detection, characterization and function. International Journal of Molecular Sciences., 21(3), 1027. https://doi.org/10.3390/ijms21031027
  • Kuo, C.-C., Hänzelmann, S., Sentürk Cetin, N., Frank, S., Zajzon, B., Derks, J.-P., Akhade, V. S., Ahuja, G., Kanduri, C., Grummt, I., Kurian, L., & Costa, I. G. (2019). Detection of RNA-DNA binding sites in long noncoding RNAs. Nucleic Acids Research, 47(6), e32–e32. https://doi.org/10.1093/nar/gkz037
  • Lam, J. H., Li, Y., Zhu, L., Umarov, R., Jiang, H., Héliou, A., Sheong, F. K., Liu, T., Long, Y., Li, Y., Fang, L., Altman, R. B., Chen, W., Huang, X., & Gao, X. (2019). A deep learning framework to predict binding preference of RNA constituents on protein surface. Nature Communications, 10(1), 4941. https://doi.org/10.1038/s41467-019-12920-0
  • Lu, Q., Yu, T., Ou, X., Cao, D., Xie, T., & Chen, X. (2017). Potential lncRNA diagnostic biomarkers for early gastric cancer. Molecular Medicine Reports, 16(6), 9545–9552. https://doi.org/10.3892/mmr.2017.7770
  • Marangoni, K., Neves, A. F., Rocha, R. M., Faria, P. R., Alves, P. T., Souza, A. G., Fujimura, P. T., Santos, F. A. A., Araújo, T. G., Ward, L. S., & Goulart, L. R. (2015). Prostate-specific RNA aptamer: Promising nucleic acid antibody-like cancer detection. Scientific Reports, 5(1), 12090. https://doi.org/10.1038/srep12090
  • Nabok, A., Abu-Ali, H., Takita, S., & Smith, D. P. (2021). Electrochemical detection of prostate cancer biomarker PCA3 using specific rna-based aptamer labelled with ferrocene. Chemosensors, 9(4), 59. https://doi.org/10.3390/chemosensors90400
  • Panda, S., Shiras, A., & Bapat, S. A. (2018). Chapter 22 – Long noncoding RNAs: Insight into their roles in normal and cancer stem cells. In D. J. Chakrabarti & D. S. Mitra (Eds.), Cancer and noncoding RNAs (Vol. 1, pp. 409–427). Academic Press.
  • Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1–19. https://doi.org/10.1006/jcph.1995.1039
  • Ramnarine, V. R., Kobelev, M., Gibb, E. A., Nouri, M., Lin, D., Wang, Y., Buttyan, R., Davicioni, E., Zoubeidi, A., & Collins, C. C. (2019). The evolution of long noncoding RNA acceptance in prostate cancer initiation, progression, and its clinical utility in disease management. European Urology, 76(5), 546–559. https://doi.org/10.1016/j.eururo.2019.07.040
  • Rasool, M., Malik, A., Zahid, S., Basit Ashraf, M. A., Qazi, M. H., Asif, M., Zaheer, A., Arshad, M., Raza, A., & Jamal, M. S. (2016). Non-coding RNAs in cancer diagnosis and therapy. Non-Coding RNA Research, 1(1), 69–76. https://doi.org/10.1016/j.ncrna.2016.11.001
  • Reuter, J. S., & Mathews, D. H. (2010). RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11(1), 129. https://doi.org/10.1186/1471-2105-11-129
  • Reyes, F. E., Garst, A. D., & Batey, R. T. (2009). Chapter 6 – Strategies in RNA crystallography. In Methods in enzymology (vol. 469, pp. 119–139). Academic Press.
  • Richards, F. M. (1977). Areas, volumes, packing, and protein structure. Annual Review of Biophysics and Bioengineering, 6(1), 151–176. https://doi.org/10.1146/annurev.bb.06.060177.001055
  • Saxena, A., & Carninci, P. (2011). Long non-coding RNA modifies chromatin: Epigenetic silencing by long non-coding RNAs. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33(11), 830–839. https://doi.org/10.1002/bies.201100084
  • Schug, A., Herges, T., & Wenzel, W. (2003). Reproducible protein folding with the stochastic tunneling method. Physical Review Letters, 91(15), 158102. https://doi.org/10.1103/PhysRevLett.91.158102
  • Seetin, M. G., & Mathews, D. H. (2011). Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints. Journal of Computational Chemistry, 32(10), 2232–2244. https://doi.org/10.1002/jcc.21806
  • Shao, Y. (2014). Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer, 120(21), 3320–3328. https://doi.org/10.1002/cncr.28882
  • Shirvanyants, D., Ding, F., Tsao, D., Ramachandran, S., & Dokholyan, N. V. (2012). Discrete molecular dynamics: An efficient and versatile simulation method for fine protein characterization. The Journal of Physical Chemistry. B, 116(29), 8375–8382. https://doi.org/10.1021/jp2114576
  • Sioss, J. A. (2012). Nanoresonator chip-based RNA sensor strategy for detection of circulating tumor cells: Response using PCA3 as a prostate cancer marker. Nanomedicine, 8(6), 1017–1025. https://doi.org/10.1016/j.nano.2011.11.009
  • Sundberg, E. J., & Mariuzza, R. A. (2002). Molecular recognition in antibody-antigen complexes. In Advances in protein chemistry (Vol. 61, pp. 119–160). Academic Press.
  • Tinzl, M., Marberger, M., Horvath, S., & Chypre, C. (2004). DD3PCA3 RNA analysis in urine – A new perspective for detecting prostate cancer. European Urology, 46(2), 182–187. https://doi.org/10.1016/j.eururo.2004.06.004
  • Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated annealing. Physica A: Statistical Mechanics and Its Applications, 233(1), 395–406. doi:https://doi.org/10.1016/S0378-4371(96)00271-3. https://doi.org/10.1016/S0378-4371(96)00271-3
  • Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated annealing: Theory and applications (pp. 7–15). Springer.
  • Vance, K. W., & Ponting, C. P. (2014). Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends in Genetics: TIG, 30(8), 348–355. https://doi.org/10.1016/j.tig.2014.06.001
  • Wang, A., Bao, Y., Wu, Z., Zhao, T., Wang, D., Shi, J., Liu, B., Sun, S., Yang, F., Wang, L., & Qu, L. (2019). Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer. Cell Death & Disease, 10(3), 154. https://doi.org/10.1038/s41419-019-1331-9
  • Wenzel, W., & Hamacher, K. (1999). Stochastic tunneling approach for global minimization of complex potential energy landscapes. Physical Review Letters, 82(15), 3003. https://doi.org/10.1103/PhysRevLett.82.3003
  • Xia, Z., Gardner, D. P., Gutell, R. R., & Ren, P. (2010). Coarse-grained model for simulation of RNA three-dimensional structures. Journal of Physical Chemistry B, 114(42), 13497–13506. https://doi.org/10.1021/jp104926t
  • Yang, H.-W., Ju, S.-P., Cheng, C.-H., Chen, Y.-T., Lin, Y.-S., & Pang, S.-T. (2018). Aptasensor designed via the stochastic tunneling-basin hopping method for biosensing of vascular endothelial growth factor. Biosensors & Bioelectronics, 119, 25–33. https://doi.org/10.1016/j.bios.2018.07.073
  • Yang, H.-W., Ju, S.-P., Cheng, C.-H., Chen, Y.-T., Lin, Y.-S., & Pang, S.-T. (2018). Aptasensor designed via the stochastic tunneling-basin hopping method for biosensing of vascular endothelial growth factor. Biosensors & Bioelectronics, 119, 25–33. https://doi.org/10.1016/j.bios.2018.07.073
  • Yang, H.-W., Ju, S.-P., & Lin, Y.-S. (2019). Predicting the most stable aptamer/target molecule complex configuration using a stochastic-tunnelling basin-hopping discrete molecular dynamics method: A novel global minimum search method for a biomolecule complex. Computational and Structural Biotechnology Journal, 17, 812–820. https://doi.org/10.1016/j.csbj.2019.06.021
  • Zhang, C. T., & Chou, K. C. (1992). Monte Carlo simulation studies on the prediction of protein folding types from amino acid composition. Biophysical Journal, 63(6), 1523–1529. https://doi.org/10.1016/S0006-3495(92)81728-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.